
Lecture-04: Stochastic Processess

1 Stochastic Processes

Definition 1.1. For an arbitrary index set T and a real valued function x ∈ RT , the projection operator
πt : RT → R is defined as πt(x)≜ xt for any x ∈ RT .

Remark 1. Recall that π−1
t (−∞, x] =×s∈T(−∞, xs] where xs = x for s = t and xs = ∞ for all s ̸= t. That

is, we can write π−1
t (−∞, xt] = (−∞, xt]×s∈T:s ̸=t R for any xt ∈ R.

Definition 1.2 (Random process). Let (Ω,F, P) be a probability space. For an arbitrary index set T and
state space X ⊆ R, a map X : Ω → XT is called a random process if the projections Xt : Ω → X defined
by Xt(ω)≜ (πt ◦ X)(ω) are random variables on the given probability space. For each outcome ω ∈ Ω,
we have a function X(ω) ∈ XT called the sample path or the sample function of the process X.

Remark 2. A random process X defined on probability space (Ω,F, P) with index set T and state space
X⊆ R, can be thought of as
(a) a map X : Ω × T → X,
(b) a map X : T → XΩ, i.e. a collection of random variables Xt : Ω → X for each time t ∈ T,
(c) a map X : Ω →XT , i.e. a collection of sample functions X(ω) ∈XT for each random outcome ω ∈ Ω.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process.
If the index set T is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The
index set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial
process. When T = Rn × [0,∞), stochastic process X is a spatio-temporal process.

1.2 Measurability

For random process X : Ω → XT defined on the probability space (Ω,F, P), the projections Xt ≜ πt ◦ X
are F-measurable random variables. Therefore, the set of outcomes AXt(x) ≜ X−1

t (−∞, x] ∈ F for all
t ∈ T and x ∈ R.

Definition 1.3. A random map X : Ω → XT is called F-measurable and hence a random process, if the
set of outcomes AXt(xt)≜ X−1

t (−∞, xt] ∈ F for all t ∈ T and xt ∈ R.

Definition 1.4. The event space generated by a random process X : Ω → XT defined on a probability
space (Ω,F, P) is given by

σ(X)≜ σ(AXt(x) : t ∈ T, x ∈ R).

Definition 1.5. For a random process X : Ω → XT defined on the probability space (Ω,F, P), we define
the projection of X onto components S ⊆ T as the random vector XS : Ω → XS, where XS ≜ (Xs : s ∈ S).

Remark 3. The F-measurability of process X implies that for any countable set S ⊆ T, we have AXS(xS)≜
∩s∈S AXs(xs) ∈ F for xS ∈ XS.

Definition 1.6. We can define AX(x)≜ ∩t∈T AXt(xt) = {ω ∈ Ω : (πt ◦ X)(ω)⩽ πt(x)} for any x ∈ RT .

Remark 4. However, AX(x) is guaranteed to be an event only when S ≜ {t ∈ T : πt(x) < ∞} is a count-
able set. In this case,

AX(x) = ∩t∈T AXt(xt) = ∩s∈S AXs(xs) = AXS(xS) ∈ F.
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Remark 5. For any finite subset S ⊆ T and real vector x ∈ RT such that xt = ∞ for any t /∈ S, we define a
set

B(x)≜
{

y ∈ RT : yt ⩽ xt

}
=×

t∈T
(−∞, xt] =×

s∈S
(−∞, xs]×

t/∈S

R = ∩t∈Tπ−1
t (−∞, xt].

The measurability of the random process X implies that for any such set B(x), we have

AX(x) = X−1(B(x)) = ∩t∈T(X−1 ◦ π−1
t )(−∞, xt] = ∩t∈TX−1

t (−∞, xt] = ∩s∈SX−1
s (−∞, xs] ∈ F.

Example 1.7 (Bernoulli sequence). Consider a sample space {H, T}N. We define a mapping X :
Ω → {0,1}N such that Xn(ω) = 1{H}(ωn) = 1{ωn=H}. The map X is an F-measurable random
sequence, if each Xn : Ω → {0,1} is a bi-variate F-measurable random variable on the probability
space (Ω,F, P). Therefore, the event space F must contain the event space generated by events
En ≜ {ω ∈ Ω : Xn(ω) = 1} = {ω ∈ Ω : ωn = H} ∈ F. That is,

σ(X) = σ(En : n ∈ N).

1.3 Distribution

Definition 1.8. For a random process X : Ω → XT defined on the probability space (Ω,F, P), we define
a finite dimensional distribution FXS : RS → [0,1] for a finite S ⊆ T by

FXS(xS)≜ P(AXS(xS)) = P(∩s∈S AXs(xs)), xS ∈ RS.

Example 1.9. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N,
the event space F ≜ σ(En : n ∈ N) where En = {ω ∈ Ω : ωn = H}, and the probability measure
P : F → [0,1] defined by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

Let X : Ω →{0,1}N defined as Xn(ω) = 1En(ω) for all outcomes ω ∈ Ω and n ∈ N. For this random
sequence, we can obtain the finite dimensional distribution FXS : RS → [0,1] for any finite S ⊆ T and
x ∈ RS in terms of U ≜ {i ∈ S : xi < 0} and V ≜ {i ∈ S : xi ∈ [0,1)}, as

FXS(x) =


1, U ∪ V = ∅,
(1 − p)|V|, U = ∅,V ̸= ∅,
0, U ̸= ∅.

(1)

To define a measure on a random process, we can either put a measure on sample paths (X(ω) ∈
XT : ω ∈ Ω), or equip the collection of random variables (Xt ∈ XΩ : t ∈ T) with a joint measure. Either
way, we are interested in identifying the joint distribution F : RT → [0,1]. To this end, for any x ∈ RT ,
we need to know

FX(x)≜ P

(⋂
t∈T

{ω ∈ Ω : Xt(ω)⩽ xt}
)
= P(

⋂
t∈T

X−1
t (−∞, xt]) = P ◦ X−1×

t∈T
(−∞, xt].

First of all, we don’t know whether AX(x) is an event when T is uncountable. Though, we can verify
that AX(x) ∈ F for x ∈ RT such that {t ∈ T : xt < ∞} is countable. Second, even for a simple indepen-
dent process with countably infinite T, any function of the above form would be zero if xt is finite for all
t ∈ T. That is, for any finite set S ⊆ T, we focus on the events AS(xS) and their probabilities. However,
these are precisely the finite dimensional distributions. Set of all finite dimensional distributions of a
stochastic process X : Ω → XT characterizes its distribution completely. Simpler characterizations of a
stochastic process X are in terms of its moments. That is, the first moment such as mean, and the second
moment such as correlations and covariance functions.

mX(t)≜ EXt, RX(t, s)≜ EXtXs, CX(t, s)≜ E(Xt − mX(t))(Xs − mX(s)).
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Example 1.10. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N

and the event space F ≜ σ(En : n ∈ N) where En = {ω ∈ Ω : ωn = H}. Let X : Ω → {0,1}N defined
as Xn(ω) = 1En(ω) for all outcomes ω ∈ Ω and n ∈ N. For this random sequence, if we are given
the finite dimensional distribution FXS : RS → [0,1] for any finite S ⊆ T and x ∈ RS in terms of U ≜
{i ∈ S : xi < 0} and V ≜ {i ∈ S : xi ∈ [0,1)}, as defined in Eq. (1). Then, we can find the probability
measure P : F → [0,1] is given by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

Let q ≜ (1− p), then the probability of observing m heads and r tails is given by pmqr. We can easily
compute the mean, the auto-correlation, and the auto-covariance functions for this independent
Bernoulli process

mX(n) = EXn = p, RX(m,n) = EXmXn = EXmEXn = p2, Cx(m,n) = 0.

1.4 Independence

Definition 1.11. A stochastic process X : Ω →XT is said to be independent if for all finite subsets S ⊆ T,
the finite collection of events {{Xs ⩽ xs} : s ∈ S} are independent. That is, we have

FXS(xS) = P(∩s∈S {Xs ⩽ xs}) = ∏
s∈S

P{Xs ⩽ xs} = ∏
s∈S

FXs(xs).

Remark 6. Independence of a random process is equivalent to factorization of any finite dimensional
distribution function into product of individual marginal distribution functions.

Example 1.12. Consider a probability space (Ω,F, P) defined by the sample space Ω = {H, T}N,
the event space F ≜ σ(En : n ∈ N) where En = {ω ∈ Ω : ωn = H}, and the probability measure
P : F → [0,1] defined by

P(∩i∈FEi) = p|F|, for all finite F ⊆ N.

Then, we observe that the random sequence X : Ω → {0,1}N defined by Xn(ω) ≜ 1En(ω) for all
outcomes ω ∈ Ω and n ∈ N, is independent.

Definition 1.13. Two stochastic processes X : Ω → XT1 ,Y : Ω → YT2 are independent, if the correspond-
ing event spaces σ(X),σ(Y) are independent. That is, for any x ∈ RS1 ,y ∈ RS2 for finite S1 ⊆ T1,S2 ⊆ T2,
the events AS1(x) ≜ ∩s∈S1 X−1

s (−∞, xs] and BS2(y) ≜ ∩s∈S2Y−1
s (−∞,ys] are independent. That is, the

joint finite dimensional distribution of X and Y factorizes, and

P(AS1(x) ∩ BS2(y)) = P(AS1(x))P(BS2(y)) = FXS1
(x)FYS2

(y), x ∈ RS1 ,y ∈ RS2 .

1.5 Filtration

Let (Ω,F, P) be a probability space.

Definition 1.14. A net of event spaces denoted F• = (Ft ⊆ F : t ∈ T) is called a filtration if the index set
T is totally ordered and the net is nondecreasing, that is Fs ⊆ Ft for all s ⩽ t.

Definition 1.15. Consider a real-valued random process X indexed by the ordered set T on the prob-
ability space (Ω,F, P). The process X is called adapted to the filtration F•, if for each t ∈ T, we have
σ(Xt) ⊆ Ft or X−1

t (−∞, x] ∈ Ft for each x ∈ R.

We will consider any random process X : Ω → XT defined on this probability space with state space
X⊆ R and ordered index set T ⊆ R considered as time.
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Definition 1.16. For the random process X : Ω →XT , we define the event space generated by all random
variables until time t as Gt ≜ σ(Xs, s ⩽ t).

Remark 7. The collection of event spaces G• = (Gt : t ∈ T) is a filtration.

Definition 1.17. The natural filtration associated with a random process X : Ω → XT is given by G• =
(Gt : t ∈ T) where Gt ≜ σ(Xs, s ⩽ t).

Remark 8. Any random process X is adapted to its natural filtration.

Remark 9. For a random sequence X : Ω → XN, the natural filtration is a sequence G• = (Gn : n ∈ N) of
event spaces Gn ≜ σ(X1, . . . , Xn) for all n ∈ N.

Example 1.18. For a random walk S : Ω → RN with step size sequence X : Ω → RN defined by
Sn ≜ ∑n

i=1 Xi for all n ∈ N, the natural filtration of the random walk is identical to that of the step
size sequence. That is, σ(S1, . . . ,Sn) = σ(X1, . . . , Xn) for all n ∈ N. This follows from the fact that for
all n ∈ N, we can can write Sj = ∑

j
i=1 Xi and Xj = Sj − Sj−1 for all j ∈ [n]. That is, there is a bijection

between (X1, . . . , Xn) and (S1, . . . ,Sn).

Remark 10. If the random sequence X is independent, then the random sequence (Xn+j : j ∈ N) is
independent of the event space σ(X1, . . . , Xn).

Remark 11. If X : Ω → XT is an independent process with the associated natural filtration G•, then for
any t > s and events A ∈ Gs, the random variable Xt is independent of the event A. This is just a fancy
way of saying Xt is independent of σ(Xu,u ⩽ s). Hence, for any random variable Y ∈ Fs, we have

E[XtY|Fs] = YE[Xt].

1.6 Progressive measurability

For continuous-time processes, where the time t ranges over an arbitrary index set T ⊆ R, the property
of being adapted is too weak to be helpful in many situations. Instead, we need to consider measura-
bility of the process as a map X : T × Ω → R. To this end, we first define measurability on the product
spaces.

Definition 1.19. Let S and V be two event spaces. The product event space denoted S⊗ V is defined as

S⊗ V≜ σ(s × v : s ∈ S,v ∈ V).

Definition 1.20. For a random process X : Ω → XT and any time s ∈ T, we can define a stopped process
Xs : Ω → XT such that Xs

t ≜ Xt∧s for all t ∈ T.

Definition 1.21. A process X : T × Ω → R adapted to filtration F• is progressive or progressively
measurable, if stopped process Xs is B((−∞, s])⊗ Fs measurable for all s ∈ T.

Remark 12. Since πΩ ◦ (X−1(−∞, x] ∩ ({t} × Ω)) = X−1
t (−∞, x] ∈ Ft, every progressively measurable

process is adapted and jointly measurable.

Lemma 1.22. When T is countable, every adapted process is progressive.

Proof. It suffices to show this for countable T = N. Let X : Ω → XN be a real valued process adapted to
filtration F•, and Xm be a stopped process for m ∈N. We observe that the inverse map (Xm)−1(−∞, x]≜
{(n,ω) : n ⩽ m, X(n,ω)⩽ x} = ∪n∈[m]({n} × X−1

n (−∞, x]) ∈ B([m])⊗ Fm.

Definition 1.23. A set S ⊆ T × Ω is said to be progressive if its indicator function 1S is progressive.
Equivalently, S ∩ (−∞, s]× Ω ∈ B((−∞, s])⊗ Fs for all s ∈ T.

Proposition 1.24. The progressively measurable sets form a σ-algebra.

Proof. By definition product event space B((−∞, s]) ⊗ Fs is a σ-algebra for all s ∈ T. We define the
collection

G≜ {S ⊆ T × Ω : S ∩ (−∞, s]× Ω ∈ B((−∞, s])⊗ Fs for all s ∈ T} .

We need to show the following three conditions for G to be a σ-algebra.
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(i) It is easy to see that T × Ω ∈ G since (T × Ω)∩ ((−∞, s]× Ω) = (−∞, s]× Ω ∈B((−∞, s])⊗Fs for
all s ∈ T by definition.

(ii) Let S ∈ G, then we will show that Sc ∈ G. Let s ∈ T, then using the fact that B((−∞, s])⊗ Fs is a σ-
algebra, it follows that Sc ∩ ((−∞, s]×Ω) = (S∩ (−∞, s]×Ω)c ∩ ((−∞, s]×Ω) ∈B((−∞, s])⊗Fs.

(iii) Let S ∈ GN then Sn ∩ (−∞, s]×Ω ∈B((−∞, s])⊗Fs for all n ∈ N, and we will show that ∪n∈NSn ∈
G. We fix a s ∈ T, and the result follows from the distributive property of intersections, and the
closure of B((−∞, s])⊗ Fs under countable unions.

Proposition 1.25. A stochastic process is progressive iff it is measurable with respect to progressive σ-algebra.

Proof. Let X : Ω → XT be a random process adapted to a filtration F•. Let X be progressive and fix s ∈ T
and x ∈ R, then we show that any event generated by the stopped process Xs is progressive. Indeed,
we observe that (Xs)−1(−∞, x] ∩ ((−∞,u]× Ω) = (Xs∧u)−1(−∞, x] ∈ B((−∞,u])⊗ Fu for all u ∈ T.

Conversely, if we assume that any event generated by X is progressive, then X−1(−∞, x]∩ ((−∞, s]∩
Ω) = (Xs)−1(−∞, x] ∈ B((−∞, s])⊗ Fs for all s ∈ T and x ∈ R. It follows that X is progressive.

Proposition 1.26. Every adapted process with right-continuous sample paths is progressively measurable.

Theorem 1.27. Every measurable and adapted process has a progressively measurable modification.
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