Lecture-06: Strong Markov Property

1 Strong Markov property

We will consider real valued processes X : QO — X' defined on a probability space (Q, 7, P) with state
space X C R and ordered index set T C R, adapted to its natural filtration by Fo = (J4,t € T), where
Fi 2 0(Xs,s<t)foralltcT.

Definition 1.1. A process X : ) — XT adapted to a filtration J,, is called Markov if we have

E[Lix,<x | Fs] = E[lix,<x) | 0(Xs)]-

Example 1.2. An independent process is trivially Markov, since
E[Lix,<x} | Fs] = Elyx,<ay = E[l{x,<x} | 0(X5)]-

Example 1.3. Consider a random walk process S : Q) — RN defined in term of i.i.d. step-size process
X:0—-RNasS, £y" X forall n € N. The random walk S is Markov with respect to its natural
filtration F,. To see this, take n € IN and observe from the independence of X;, . and F, that

E[lss,.,<x) | Fnl =E[lix,, <x—s,1] = E[Lix,, <x—s,} | 0(Sn)] = E[1(s, , <xy | 0(Sn)]-

Definition 1.4. Let X : Q — X be a real valued Markov process adapted to a filtration F,. Let T be a
stopping time with respect to this filtration, then the process X is called strongly Markov if for all x € R
and t > 0, we have

E[lix, . <x | T = E[lix,, . <x | 0(Xe)]-

Lemma 1.5. Consider a Markov process X : Q — X adapted to a filtration T, and associated stopping time T.
If T is almost surely countable, then the process X is strongly Markov at this stopping time T.

Proof. Let I C T be the countable set such that P{t ¢ I} = 0. Fix x € R and t > 0, then it it suffices to
show that for all A € F;

E[1AE[Lx, . ,<x|0(Xo)]] = E[1alx,. <x]-

Let A € F;. From almost sure finiteness of T, we can write A = Ujc;AN {t =i}, where AN {t =i} € F;
for all i € I. From the tower property of conditional expectation and F;-measurability of AN {t =i},

E[1alix,,.<x}) = Y E[Lanix,<anfe=i}] = 2 BIE[Langx,,i<xpnir=it| Fill = Y E[Lalz—y E[1x,, <} | Fil]-
icl icl iel

From Markov property of process X, we have E[1;x, . .<x}[Fi] = E[1;x,.,<x}}[0(Xi)]. Further, recall
that for a countable random variable 7, we have E[Y | ¢(7)] = Lie; L{r— E[Y | {T = i}]. Therefore,

E[lalix, .<x] =E[la Z]l{r:i}]E[]l{X,+i<x} lo(Xi)]] = E[LAE[1x,, . <x} o (X2)]]-
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Corollary 1.6. Any Markov process on countable index set T is strongly Markov.
Proof. For a countable index set T, any associated stopping time is countable. O

Corollary 1.7. Let T be a stopping time with respect to the natural filtration Fo of an ii.d. random sequence X.
Then (X441, .., Xc+n) is independent of Fr for each n € N and identically distributed to (Xq,..., Xn).



Proof. Let F: R — [0,1] be the common distribution for the i.i.d. sequence X, then we can write the
conditional joint distribution as

E| ¥ Lemm [ [0t 15 = & Lemm BT TV, 1Fn) = & Lemmy TTFG) =T TF(x0).
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Theorem 1.8. Let X : QO — X7 be any real-valued Markov process adapted to the filtration Fo, with right-
continuous sample paths. If the map t — E[f(Xs)|o(X¢)] is right-continuous for each bounded continuous
function f, then X is strongly Markov.

Proof. Let f : R — R be a bounded continuous function, ¢ > 0, and T be an J,-adapted stopping time. It
suffices to show that f(X;) satisfies the strong Markov property. For each m € IN, consider the intervals
I = ((k—1)27™,k27™] for all k € [22™], and define

22m

A —
o= LR e )

Clearly the stopping time T < T, < 2" a.s. and takes countable values for each m. Further, T, is de-
creasing in m. From a.s. finiteness of stopping time T, there exists an my € IN such that 7, | 7 for all
outcomes w € (). Since T < Ty, it follows that Fr C F%,. From strong Markov property for countably
valued stopping times, we have for each A € J;, we have

E[14f(Xz,+1)] = E[LAE[f (X, +4)[0(Xg,)]-

Taking limit as T, | T on both sides and applying dominated convergence theorem, we get

E[14f(Xr+t)] = E[1AB[f (Xr44)|0(X7)]]-
O

Corollary 1.9. The counting process N : () — Z]E* associated with the Poisson point process S : Q) — RN,
satisfies the strong Markov property.

Proof. Tt suffices to check the right continuity of the map t — Ey, f(N;s) for s > t and any bounded
continuous function f, which holds from the stationary and independent increment property of Poisson
process N;. In particular, Ny — N; is a Poisson random variable with mean A(¢,s] and independent of
N;, and hence

A(t,s]
En,f(Ns) = En f(Ns = N; + Np) = ) e (Tf]f(Nt + k).
k€Z+ :

The continuity of the map follows from the right continuity of N;, boundedness and continuity of f,
continuity of A(t,s], and bounded convergence theorem. O

Corollary 1.10. The standard Brownian motion B : Q — RR®+ satisfies the strong Markov property.

Proof. Tt suffices to check the right continuity of the map t +— Ep, f(Bs) for s > t and any bounded con-
tinuous function f, which holds from the stationary and independent increment property of Brownian
motion B;. In particular, B; — B; is a Gaussian random variable with zero mean and variance (s — t),
independent of B;. Therefore,
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Ep, f(Bs) = Ep, f(Bs — B: + By) =/ Re_ﬁf(Bt + x)dx. (1)
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The continuity of the map follows from the continuity of B;, boundedness and continuity of f, and
bounded convergence theorem. O

Definition 1.11. Let S : Q) — RY be a one-dimensional random walk associated with an i.i.d. positive
step-size sequence X : (2 — ]R]f. We define the associated counting process N : () — ZE* such that
Nt &Y en Lys,<s) is the number of steps in time (0, ¢].



Proposition 1.12. Let N: () — Zﬂf' be the counting process associated with a random walk S : Q — RN, and
S be the natural filtration for the positive step size sequence X : Q — RY. Then (Ns,, +¢, — Ns,,,--,Ns,, +t, —
Ng, ) is independent of G, and has the same joint distribution as (Ny,,..., Ny, )

n)e

Proof. Recall that {N; =k} = {Sy <t,5¢,1 > t}, and hence we can write
{Ns, +t = Ns,, =k} = {Spk < Sm +t,Smik1> Sm +1}.

Since S, 1y — Sm has same distribution as Sy for all k > 0 and is independent of G,,, we can write
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P((V{Ns,+t; = Ns,, =k} [9m) = P(( | {Sk—m < t1,Sk—m > ti}) = P(( ) {Ny, =ki}).
i=1 i=1 i=1
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