
Lecture-06: Strong Markov Property

1 Strong Markov property

We will consider real valued processes X : Ω → XT defined on a probability space (Ω,F, P) with state
space X ⊆ R and ordered index set T ⊆ R, adapted to its natural filtration by F• = (Ft, t ∈ T), where
Ft ≜ σ(Xs, s ⩽ t) for all t ∈ T.

Definition 1.1. A process X : Ω → XT adapted to a filtration F•, is called Markov if we have

E[1{Xt⩽x} | Fs] = E[1{Xt⩽x} | σ(Xs)].

Example 1.2. An independent process is trivially Markov, since

E[1{Xt⩽x} | Fs] = E1{Xt⩽x} = E[1{Xt⩽x} | σ(Xs)].

Example 1.3. Consider a random walk process S : Ω → RN defined in term of i.i.d. step-size process
X : Ω → RN as Sn ≜ ∑n

i=1 Xi for all n ∈ N. The random walk S is Markov with respect to its natural
filtration F•. To see this, take n ∈ N and observe from the independence of Xn+1 and Fn that

E[1{Sn+1⩽x} | Fn] = E[1{Xn+1⩽x−Sn}] = E[1{Xn+1⩽x−Sn} | σ(Sn)] = E[1{Sn+1⩽x} | σ(Sn)].

Definition 1.4. Let X : Ω → XT be a real valued Markov process adapted to a filtration F•. Let τ be a
stopping time with respect to this filtration, then the process X is called strongly Markov if for all x ∈ R

and t > 0, we have
E[1{Xt+τ⩽x} | Fτ ] = E[1{Xt+τ⩽x} | σ(Xτ)].

Lemma 1.5. Consider a Markov process X : Ω → XT adapted to a filtration F•, and associated stopping time τ.
If τ is almost surely countable, then the process X is strongly Markov at this stopping time τ.

Proof. Let I ⊆ T be the countable set such that P{τ /∈ I} = 0. Fix x ∈ R and t > 0, then it it suffices to
show that for all A ∈ Fτ

E[1AE[1{Xτ+t⩽x}|σ(Xτ)]] = E[1A1{Xτ+t⩽x}].

Let A ∈ Fτ . From almost sure finiteness of τ, we can write A = ∪i∈I A ∩ {τ = i}, where A ∩ {τ = i} ∈ Fi
for all i ∈ I. From the tower property of conditional expectation and Fi-measurability of A ∩ {τ = i},

E[1A1{Xt+τ⩽x}] =∑
i∈I

E[1A∩{Xt+τ⩽x}∩{τ=i}] =∑
i∈I

E[E[1A∩{Xt+i⩽x}∩{τ=i}|Fi]] =∑
i∈I

E[1A1{τ=i}E[1{Xt+i⩽x}|Fi]].

From Markov property of process X, we have E[1{{Xt+i⩽x}}|Fi] = E[1{{Xt+i⩽x}}|σ(Xi)]. Further, recall
that for a countable random variable τ, we have E[Y | σ(τ)] = ∑i∈I 1{τ=i}E[Y | {τ = i}]. Therefore,

E[1A1{Xt+τ⩽x}] = E[1A ∑
i∈I

1{τ=i}E[1{Xt+i⩽x}|σ(Xi)]] = E[1AE[1{Xt+τ⩽x}|σ(Xτ)]].

Corollary 1.6. Any Markov process on countable index set T is strongly Markov.

Proof. For a countable index set T, any associated stopping time is countable.

Corollary 1.7. Let τ be a stopping time with respect to the natural filtration F• of an i.i.d. random sequence X.
Then (Xτ+1, . . . , Xτ+n) is independent of Fτ for each n ∈ N and identically distributed to (X1, . . . , Xn).
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Proof. Let F : R → [0,1] be the common distribution for the i.i.d. sequence X, then we can write the
conditional joint distribution as

E
[

∑
m∈N

1{τ=m}
n

∏
i=1

1{Xτ+i⩽xi} |Fτ

]
= ∑

m∈N

1{τ=m}E
[ n

∏
i=1

1{Xm+i⩽xi} |Fm

]
= ∑

m∈N

1{τ=m}
n

∏
i=1

F(xi) =
n

∏
i=1

F(xi).

Theorem 1.8. Let X : Ω → XT be any real-valued Markov process adapted to the filtration F•, with right-
continuous sample paths. If the map t 7→ E[ f (Xs)|σ(Xt)] is right-continuous for each bounded continuous
function f , then X is strongly Markov.

Proof. Let f : R → R be a bounded continuous function, t ⩾ 0, and τ be an F•-adapted stopping time. It
suffices to show that f (Xt) satisfies the strong Markov property. For each m ∈ N, consider the intervals
Ik,m ≜ ((k − 1)2−m,k2−m] for all k ∈ [22m], and define

τm ≜
22m

∑
k=1

k2−m
1{τ∈Ik,m}.

Clearly the stopping time τ ⩽ τm ⩽ 2m a.s. and takes countable values for each m. Further, τm is de-
creasing in m. From a.s. finiteness of stopping time τ, there exists an m0 ∈ N such that τm ↓ τ for all
outcomes ω ∈ Ω. Since τ ⩽ τm, it follows that Fτ ⊆ Fτm . From strong Markov property for countably
valued stopping times, we have for each A ∈ Fτ , we have

E[1A f (Xτm+t)] = E[1AE[ f (Xτm+t)|σ(Xτm)].

Taking limit as τm ↓ τ on both sides and applying dominated convergence theorem, we get

E[1A f (Xτ+t)] = E[1AE[ f (Xτ+t)|σ(Xτ)]].

Corollary 1.9. The counting process N : Ω → Z
R+
+ associated with the Poisson point process S : Ω → RN

+ ,
satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map t 7→ ENt f (Ns) for s ⩾ t and any bounded
continuous function f , which holds from the stationary and independent increment property of Poisson
process Nt. In particular, Ns − Nt is a Poisson random variable with mean Λ(t, s] and independent of
Nt, and hence

ENt f (Ns) = ENt f (Ns − Nt + Nt) = ∑
k∈Z+

e−Λ(t,s] Λ(t, s]k

k!
f (Nt + k).

The continuity of the map follows from the right continuity of Nt, boundedness and continuity of f ,
continuity of Λ(t, s], and bounded convergence theorem.

Corollary 1.10. The standard Brownian motion B : Ω → RR+ satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map t 7→ EBt f (Bs) for s ⩾ t and any bounded con-
tinuous function f , which holds from the stationary and independent increment property of Brownian
motion Bt. In particular, Bs − Bt is a Gaussian random variable with zero mean and variance (s − t),
independent of Bt. Therefore,

EBt f (Bs) = EBt f (Bs − Bt + Bt) =
∫

x∈R
e−

x2
2(s−t) f (Bt + x)dx. (1)

The continuity of the map follows from the continuity of Bt, boundedness and continuity of f , and
bounded convergence theorem.

Definition 1.11. Let S : Ω → RN
+ be a one-dimensional random walk associated with an i.i.d. positive

step-size sequence X : Ω → RN
+ . We define the associated counting process N : Ω → Z

R+
+ such that

Nt ≜ ∑n∈N1{Sn⩽t} is the number of steps in time (0, t].
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Proposition 1.12. Let N : Ω → Z
R+
+ be the counting process associated with a random walk S : Ω → RN

+ , and
G• be the natural filtration for the positive step size sequence X : Ω → RN

+ . Then (NSm+t1 − NSm , . . . , NSm+tn −
NSm) is independent of Gm and has the same joint distribution as (Nt1 , . . . , Ntn).

Proof. Recall that {Nt = k} = {Sk ⩽ t,Sk+1 > t}, and hence we can write

{NSm+t − NSm = k} = {Sm+k ⩽ Sm + t,Sm+k+1 > Sm + t} .

Since Sm+k − Sm has same distribution as Sk for all k ⩾ 0 and is independent of Gm, we can write

P(
n⋂

i=1

{
NSm+ti − NSm = ki

}
|Gm) = P(

n⋂
i=1

{
Ski−m ⩽ t1,Ski−m > ti

}
) = P(

n⋂
i=1

{Nti = ki}).
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