Lecture-08: Distribution and renewal functions

1 Convolution of distribution functions

Definition 1.1. For two distribution functions $F, G: \mathbb{R} \rightarrow[0,1]$ the convolution of F and G is a distribution function $F * G: \mathbb{R} \rightarrow[0,1]$ defined as

$$
(F * G)(x) \triangleq \int_{y \in \mathbb{R}} F(x-y) d G(y), x \in \mathbb{R}
$$

Remark 1. Verify that $F * G$ is indeed a distribution function. That is, the function $(F * G)$ is
(a) right continuous, i.e. $\lim _{x_{n} \downarrow x}(F * G)\left(x_{n}\right)$ exists,
(b) non-decreasing, i.e. $(F * G)(z) \geqslant(F * G)(x)$ for all $z \geqslant x$,
(c) having left limit of zero and right limit of unity, i.e. $\lim _{x \rightarrow-\infty}(F * G)(x)=0, \lim _{x \rightarrow \infty}(F * G)(x)=1$.

Remark 2. Verify that convolution is a symmetric and bi-linear operator. That is, for any distribution functions (F, G) and $\left(F_{i}: i \in[n]\right),\left(G_{j}: j \in[m]\right)$ and vectors $\alpha \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{m}$, we have

$$
F * G=G * F, \quad\left(\sum_{i \in[n]} \alpha_{i} F_{i}\right) *\left(\sum_{j \in[m]} \beta_{j} G_{j}\right)=\sum_{i \in[n]} \sum_{j \in[m]} \alpha_{i} \beta_{j}\left(F_{i} * G_{j}\right) .
$$

Lemma 1.2. Let X and Y be two independent random variables defined on the probability space (Ω, \mathcal{F}, P) with distribution functions F and G respectively, then the distribution of $X+Y$ is given by $F * G$.
Proof. The distribution function of sum $X+Y$ is given by $H: \mathbb{R} \rightarrow[0,1]$ where for any $z \in \mathbb{R}$,

$$
H(z)=\mathbb{E}_{\{X+Y \leqslant z\}}=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\{X+Y \leqslant z\}} \mid \sigma(Y)\right]\right]=\mathbb{E}[F(z-Y)]=\int_{y \in \mathbb{R}_{+}} F(z-y) d G(y)
$$

Definition 1.3. Let $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be an independent random sequence defined on the probability space (Ω, \mathcal{F}, P) with distribution function F, then the distribution of $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ is given by $F_{n} \triangleq F_{n-1} * F$ for all $n \geqslant 2$ and $F_{1}=F$.
Lemma 1.4. Consider a renewal sequence $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ with i.i.d. inter-renewal time sequence $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ having common distribution $F: \mathbb{R}_{+} \rightarrow[0,1]$. The distribution function of nth renewal instant $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ is given by $P\left\{S_{n} \leqslant t\right\}=F_{n}(t)$ for all $t \in \mathbb{R}$, where F_{n} is n-fold convolution of the distribution function F.
Remark 3. The distribution function F_{n} is computed inductively as $F_{n}=F_{n-1} * F$, where $F_{1}=F$.

Example 1.5 (Poisson process). For a renewal sequence S with the common distribution for i.i.d. inter-renewal times being $F(x)=1-e^{-\lambda x}$ for $x \in \mathbb{R}_{+}$, the distribution of nth renewal instant is

$$
F_{n}(t)=\int_{0}^{t} \frac{\lambda^{n} s^{n-1}}{(n-1)!} e^{-\lambda s} d s
$$

Corollary 1.6. The distribution function of nth arrival instant S_{n} for delayed renewal process is $G * F_{n-1}$.
Corollary 1.7. The distribution function of counting process $N^{D}: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$for the delayed renewal process is

$$
\begin{equation*}
P\left\{N_{t}^{D}=n\right\}=P\left\{S_{n} \leqslant t\right\}-P\left\{S_{n+1} \leqslant t\right\}=\left(G * F_{n-1}\right)_{t}-\left(G * F_{n}\right)_{t} \tag{1}
\end{equation*}
$$

2 Renewal functions

Definition 2.1. Mean of the counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is called the renewal function denoted by $m: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$defined by $m_{t}=\mathbb{E}\left[N_{t}\right]$ for all $t \in \mathbb{R}_{+}$.
Proposition 2.2. Renewal function m for a renewal process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$with distribution of renewal instants $F_{n} \triangleq F_{S_{n}}$ for each $n \in \mathbb{N}$, can be written as $m_{t}=\sum_{n \in \mathbb{N}} F_{n}(t)$.

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

$$
m_{t}=\mathbb{E}\left[N_{t}\right]=\sum_{n \in \mathbb{N}} P\left\{N_{t} \geqslant n\right\}=\sum_{n \in \mathbb{N}} P\left\{S_{n} \leqslant t\right\}=\sum_{n \in \mathbb{N}} F_{n}(t) .
$$

Example 2.3 (Poisson process). For a renewal sequence S with the common distribution for i.i.d. inter-renewal times being $F(x)=1-e^{-\lambda x}$ for $x \in \mathbb{R}_{+}$, the renewal function is

$$
m_{t}=\sum_{n \in \mathbb{N}} F_{n}(t)=\int_{0}^{t} \lambda\left(e^{-\lambda s} \sum_{n \in \mathbb{Z}_{+}} \frac{(\lambda s)^{n}}{s!}\right) d s=\int_{0}^{t} \lambda d s=\lambda t
$$

Corollary 2.4. The renewal function m_{D} for a delayed renewal process $N_{D}: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$with distribution G for first inter-renewal times and F for other inter-renewal times, is given by $m_{D}=G+G * m$.

Proof. We can write the renewal function for the delayed renewal process as

$$
\begin{equation*}
m_{t}^{D}=\mathbb{E} N_{t}^{D}=\sum_{n \in \mathbb{N}}\left(G * F_{n-1}\right)_{t}=G_{t}+(G * m)_{t} \tag{2}
\end{equation*}
$$

Remark 4. If $G=F$, then $m=F+F * m$

3 Laplace transform of distribution functions and renewal functions

Definition 3.1. For a distribution function $F: \mathbb{R} \rightarrow[0,1]$ the Laplace transform $\mathcal{L}(F)$ is a map $\tilde{F}: \mathbb{C} \rightarrow \mathbb{C}$ defined

$$
\tilde{F}(s) \triangleq \int_{y \in \mathbb{R}} e^{-s y} d F(y)=\mathbb{E}\left[e^{-s X}\right]
$$

where s lies in the region such that $|\tilde{F}(s)|<\infty$, and X is a random variable with distribution F.
Lemma 3.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform of individual distribution functions.

Proof. Let $F, G: \mathbb{R} \rightarrow[0,1]$ be two distribution functions such that $\mathcal{L}(F)=\tilde{F}$ and $\mathcal{L}(G)=\tilde{G}$, then

$$
\mathcal{L}(F * G)(s)=\int_{x \in \mathbb{R}} e^{-s x} \int_{y \in \mathbb{R}} d F(x-y) d G(y)=\int_{y \in \mathbb{R}} e^{-s y} d G(y) \int_{x-y \in \mathbb{R}} e^{-s(x-y)} d F(x-y)=\tilde{F}(s) \tilde{G}(s)
$$

Corollary 3.3. Let X and Y be two independent random variables defined on the probability space (Ω, \mathcal{F}, P) with Laplace transform of distribution functions \tilde{F} and \tilde{G} respectively, then the Laplace transform of the distribution of $X+Y$ is given by $\tilde{F} \tilde{G}$.

Corollary 3.4. Let $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be an independent random sequence defined on the probability space (Ω, \mathcal{F}, P) with the Laplace transform of the distribution function given by \tilde{F}, then the Laplace transform of the distribution of $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ is given by $\mathcal{L}\left(F_{n}\right)=(\tilde{F})^{n}$.

Corollary 3.5. We denote the Laplace transform for the inter-arrival time distribution F by $\mathcal{L}(F)=\tilde{F}$, then the Laplace transform of the renewal function m is given by

$$
\tilde{m}(s)=\frac{\tilde{F}(s)}{1-\tilde{F}(s)}, \quad \Re\{\tilde{F}(s)\}<1
$$

Example 3.6 (Poisson process). The Laplace transform of an exponential distribution $F(x)=1-$ $e^{-\lambda x}$ for $x \in \mathbb{R}_{+}$is given by $\tilde{F}(s)=\frac{\lambda}{\lambda+s}$ for $\Re(s)>-\lambda$. For a renewal sequence S with the common distribution for i.i.d. inter-renewal times being the exponential distribution F, the Laplace transform for the renewal function is

$$
\tilde{m}(s)=\frac{\tilde{F}(s)}{1-\tilde{F}(s)}=\frac{\lambda}{s}, \quad \Re(s)>-\lambda .
$$

The Laplace transform for the distribution F_{n} is given by

$$
\tilde{F_{n}}(s)=\left(1+\frac{s}{\lambda}\right)^{-n}, \quad \Re(s)>-\lambda
$$

Lemma 3.7. Let the Laplace transforms for the distributions of the first inter-arrival time and the subsequent inter-arrival times be denoted by $\tilde{G}=\mathcal{L}(G)$ and $\tilde{F}=\mathcal{L}(F)$ respectively, then the Laplace transform of the renewal function m_{D} for the delayed renewal process is

$$
\begin{equation*}
\tilde{m}_{D}(s)=\frac{\tilde{G}(s)}{1-\tilde{F}(s)}, \Re\{\tilde{F}(s)\}<1 . \tag{3}
\end{equation*}
$$

Proposition 3.8. For renewal process with $\mathbb{E} X_{n}>0$, the renewal function is bounded for all finite times.
Proof. Since we assumed that $P\left\{X_{n}=0\right\}<1$, it follow from continuity of probabilities that there exists $\alpha>0$, such that $P\left\{X_{n} \geqslant \alpha\right\}=\beta>0$. We can define bivariate random variables

$$
\bar{X}_{n}=\alpha 1_{\left\{X_{n} \geqslant \alpha\right\}} \leqslant X_{n} .
$$

Note that since $X_{i}{ }^{\prime}$ s are i.i.d., so are \bar{X}_{i} 's. Each \bar{X}_{i} takes values in $\{0, \alpha\}$ with probabilities $1-\beta$ and β respectively. Let \bar{N}_{t} denote the renewal process with inter-arrival times \bar{X}_{n}, with arrivals at integer multiples of α. Then for all sample paths, we have

$$
N_{t}=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{\sum_{i=1}^{n} X_{i} \leqslant t\right\}} \leqslant \sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{\sum_{i=1}^{n} \bar{X}_{i} \leqslant t\right\}}=\bar{N}_{t} .
$$

Hence, it follows that $\mathbb{E} N_{t} \leqslant \mathbb{E} \bar{N}_{t}$, and we will show that $\mathbb{E} \bar{N}_{t}$ is finite. We can write the joint event of number of arrivals n_{i} at each arrival instant in $i \alpha$ for $i \in\{0, \ldots, k-1\}$, as

$$
\bigcap_{i=0}^{k-1}\left\{\bar{N}_{i \alpha}=n_{i}\right\}=\left\{X_{1}<\alpha\right\} \bigcap_{i=0}^{k-1}\left\{X_{n_{i}+1} \geqslant \alpha\right\} \bigcap_{i=0}^{k-1} \bigcap_{j=2}^{n_{i}}\left\{X_{n_{i-1}+j}<\alpha\right\} .
$$

It follows that the joint distribution of number of arrivals at first k arrival instants is

$$
P\left(\bigcap_{i=0}^{k-1}\left\{\bar{N}_{i \alpha}=n_{i}\right\}\right)=(1-\beta) \prod_{i=0}^{k-1}(\beta)(1-\beta)^{n_{i}-1}
$$

It follows that the number of arrivals is independent at each arrival instant $k \alpha$ and geometrically distributed with mean $1 / \beta$ and $(1-\beta) / \beta$ for $k \in \mathbb{N}$ and $k=0$ respectively. Thus, for all $t \geqslant 0$,

$$
\begin{equation*}
\mathbb{E} N_{t} \leqslant \mathbb{E} \bar{N}_{t} \leqslant \frac{\left\lceil\frac{t}{\alpha}\right\rceil}{\beta} \leqslant \frac{\frac{t}{\alpha}+1}{\beta}<\infty . \tag{4}
\end{equation*}
$$

Corollary 3.9. For delayed renewal process with $\mathbb{E} X_{n}>0$, the renewal function is bounded at all finite times.

