Lecture-11: Key Lemma and Blackwell Theorem

1 Key Lemma

Theorem 1.1 (Key Lemma). Consider a renewal sequence $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ with i.i.d. inter-renewal times $X: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ having common distribution function F, associated counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$, and the renewal function $m: \mathbb{R}_+ \to \mathbb{R}_+$. Then,

$$P\{S_{N_t} \leq s\} = \bar{F}(t) + \int_0^s \bar{F}(t-y)dm(y), \qquad t \geq s \geq 0.$$

Proof. We can see that event of time of last renewal prior to t being smaller than another time s can be partitioned into disjoint events corresponding to number of renewals until time t. Each of these disjoint events is equivalent to occurrence of nth renewal before time s and (n+1)th renewal past time t. That is,

$$\{S_{N_t} \leqslant s\} = \bigcup_{n \in \mathbb{Z}_+} \{S_{N_t} \leqslant s, N_t = n\} = \bigcup_{n \in \mathbb{Z}_+} \{S_n \leqslant s, S_{n+1} > t\}.$$

Recognizing that $S_0 = 0$, $S_1 = X_1$, and that $S_{n+1} = S_n + X_{n+1}$, we can write

$$P\{S_{N_t} \leq s\} = P\{X_1 > t\} + \sum_{n \in \mathbb{N}} \mathbb{E}[\mathbb{1}_{\{S_n \leq s\}} \mathbb{E}[\mathbb{1}_{\{X_{n+1} > t - S_n\}} | \sigma(S_n)]].$$

We recall that the distribution function of nth renewal instant S_n is the n-fold convolution of F denoted by F_n . Taking expectation of $\bar{F}(t-S_n)\mathbb{1}_{\{S_n \leq s\}}$, we get

$$P\{S_{N_t} \leq s\} = \bar{F}(t) + \sum_{n \in \mathbb{N}} \int_{y=0}^{s} \bar{F}(t-y) dF_n(y).$$

Using monotone convergence theorem to interchange integral and summation, and noticing that $m(y) = \sum_{n \in \mathbb{N}} F_n(y)$, the result follows.

Remark 1. Key lemma tells us that distribution of S_{N_t} has probability mass at 0 and density between (0,t], that is,

$$P\{S_{N_t} = 0\} = \bar{F}(t),$$
 $dF_{S_{N_t}}(y) = \bar{F}(t - y)dm(y), \quad 0 < y \le t.$

Remark 2. Density of S_{N_t} has interpretation of renewal taking place in the infinitesimal neighborhood of y, and next inter-arrival after time t - y. To see this, we notice

$$dm(y) = \sum_{n \in \mathbb{N}} dF_n(y) = \sum_{n \in \mathbb{N}} P\{S_n \in (y, y + dy)\} = \sum_{n \in \mathbb{N}} P\{n \text{th renewal occurs in } (y, y + dy)\}.$$

Combining interpretation of density of inter-arrival time dF(t), we get

$$dF_{S_{N_t}}(y) = P\{\text{renewal occurs in } (y, y + dy) \text{ and next arrival after } t - y\}.$$
 (1)

Example 1.2 (Poisson process). Let the inter-renewal time *i.i.d.* random sequence $X:\Omega:\mathbb{R}_+^\mathbb{N}$ be exponentially distributed with common distribution $F(x)=1-e^{-\lambda x}$ for $x\in\mathbb{R}_+$. Then, the distribution of last renewal is given by

$$P\{S_{N_t} \leqslant x\} = e^{-\lambda t} + \int_0^x \lambda e^{-\lambda(t-y)} dy = e^{-\lambda(t-x)}, \qquad 0 \leqslant x \leqslant t.$$

2 Delayed Regenerative Process

Theorem 2.1. Let Z be a delayed regenerative process with the associated delayed renewal sequence S, the renewal function m_D , the first arrival distribution G, and the common inter-arrival duration distribution F. For a Borel measurable set $A \in \mathcal{B}(\mathbb{R})$, we define the kernel functions $K_1(t) \triangleq P\{Z_t \in A, S_1 > t\}$, $K_2(t) \triangleq P\{Z_{S_1+t} \in A, t \in [0, X_2)\}$, then we have

$$P\{Z_t \in A\} = K_1(t) + \int_0^t dm_D(y) K_2(t - y). \tag{2}$$

Proof. For a Borel measurable set $A \in \mathcal{B}(\mathbb{R})$, we can write the probability of the delayed regenerative process taking values in this set as disjoint sum of probability of disjoint partitions of this event as

$$P\{Z_t \in A\} = P\{Z_t \in A, S_1 > t\} + \sum_{n \in \mathbb{N}} P\{Z_t \in A, N_t = n\}.$$

The nth segment of the joint process (N_t^D, Z_t) is $\zeta_n = (X_n, (Z_{S_{n-1}+t} : t \in [0, X_n)))$. From the regenerative property, we know that the segments $(\zeta_n : n \in \mathbb{N})$ are independent, where $(\zeta_n : n \geqslant 2)$ are identically distributed. In particular, we can write

$$\mathbb{E}[\mathbb{1}_{\{Z_t \in A, S_n \leqslant t < S_{n+1}\}} \mid \mathfrak{F}_{S_n}] = \mathbb{1}_{\{S_n \leqslant t\}} \mathbb{E}[\mathbb{1}_{\{Z_{t-S_n} \in A, t-S_n \in [0, X_{n+1})\}} \mid \sigma(S_n)] = \mathbb{1}_{\{S_n \leqslant t\}} K_2(t-S_n).$$

The result follows from the fact that $P\{Z_t \in A, N_t = n\} = \mathbb{E}[\mathbb{1}_{\{Z_t \in A, S_n \le t < S_{n+1}\}}].$

Example 2.2 (Age process). Age process $(A(t) = t - S_{N(t)} : t \ge 0)$ for a delayed renewal process $(S_n : n \in \mathbb{N})$ is a delayed regenerative process, since the nth segment is given by $\zeta_n = (X_n, (A(S_{n-1} + t) = t : t \ge [0, X_n)))$. For the measurable set $B = [x, \infty)$, then we can compute the kernel functions

$$K_1(t) = P\{A(t) \geqslant x, S_1 > t\} = 1_{\{t \geqslant x\}} \bar{G}(t), \quad K_2(t) = P\{A(S_1 + t) \geqslant x, t \in [0, X_2)\} = 1_{\{t \geqslant x\}} \bar{F}(t).$$

Therefore, we can write the distribution of last renewal time for the delayed renewal process as

$$P\left\{S_{N(t)} \leqslant x\right\} = P\left\{A(t) \geqslant t - x\right\} = \mathbb{1}_{\{x \geqslant 0\}}\bar{G}(t) + \int_0^t dm_D(y) \mathbb{1}_{\{t - y \geqslant t - x\}}\bar{F}(t - y).$$

Corollary 2.3 (Delayed Key Lemma). Consider a delayed renewal sequence $S: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ with independent inter-renewal times $X: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ with first renewal time having distribution G and common distribution F for inter-renewal times $(X_n, n \ge 2)$, associated counting process $N^D: \Omega \to \mathbb{Z}_+^{\mathbb{N}_+}$, and the renewal function $m_D: \mathbb{R}_+ \to \mathbb{R}_+$. Then,

$$P\left\{S_{N_t^D} \leqslant s\right\} = \bar{G}(t) + \int_0^s \bar{F}(t-y)dm_D(y), \qquad t \geqslant s \geqslant 0.$$

3 Blackwell Theorem

Lemma 3.1. For a renewal sequence S, let F be the inter-renewal time distribution such that $\inf\{x: F(x)=1\} = \infty$, then for any b>0

$$\sup_{t} \left\{ m_t - m_{t-b} \right\} < \infty.$$

Proof. Recall that $m = \sum_{n \in \mathbb{N}} F_n$ and hence m * F = m - F. This implies that m * (1 - F) = F. Since the function 1 - F is monotonically non-increasing, $\inf_{s \in [0,b]} \bar{F}(s) = \bar{F}(b)$. Therefore,

$$1 \geqslant F(t) = \int_0^t dm(s)\bar{F}(t-s) \geqslant \int_{t-b}^t dm(s)\bar{F}(t-s) \geqslant [m_t - m_{t-b}]\bar{F}(b),$$

where *b* is chosen so that F(b) < 1. Hence, the result follows.

Theorem 3.2 (Blackwell's Theorem). Consider a renewal sequence S with the inter-renewal time distribution F such that $\inf\{x: F(x) = 1\} = \infty$, mean of inter-renewal time μ , and renewal function m_t . If F is not lattice, then for all $a \ge 0$

$$\lim_{t\to\infty}m_{t+a}-m_t=\frac{a}{\mu}.$$

If F is lattice with period d, then

$$\lim_{n\to\infty} m_{(n+1)d} - m_{nd} = \frac{d}{\mu}.$$

Proof. We will not prove that the following limit exists for non-lattice *F*,

$$g(a) \triangleq \lim_{t \to \infty} [m_{t+a} - m_t] \tag{3}$$

However, we show that if this limit does exist, it is equal to a/μ as a consequence of elementary renewal theorem. To this end, note that

$$m_{t+a+b} - m_t = m_{t+a+b} - m_{t+a} + m_{t+a} - m_t$$
.

Taking limits on both sides of the above equation, we conclude that g(a + b) = g(a) + g(b). The only increasing solution of such a $g : \mathbb{R}_+ \to \mathbb{R}_+$ for all a > 0 is

$$g(a) = ca$$

for some positive constant c. To show $c = \frac{1}{\mu}$, define a sequence $x \in \mathbb{R}_+^{\mathbb{N}}$ in terms of renewal function m_t , as

$$x_n \triangleq m_n - m_{n-1}, n \in \mathbb{N}.$$

Note that $\sum_{i=1}^{n} x_i = m_n$ and $\lim_{n \in \mathbb{N}} x_n = g(1) = c$, hence we have the Cesàro mean converging to

$$\lim_{n\in\mathbb{N}}\frac{\sum_{i=1}^{n}x_{i}}{n}=\lim_{n\in\mathbb{N}}\frac{m_{n}}{n}\stackrel{(a)}{=}c,$$

where (a) follows from the fact that if a sequence $\{x_i\}$ converges to c, then the running average sequence $a_n = \frac{1}{n} \sum_{i=1}^n x_i$ also converges to c, as $n \to \infty$. Therefore, we can conclude $c = 1/\mu$ by elementary renewal theorem.

When F is lattice with period d, the limit in (3) doesn't exist. (See the following example). However, the theorem is true for lattice again by elementary renewal theorem. Indeed, since $\frac{m_{nd}}{n} \to \frac{1}{\mu}$, we can define $x_n \triangleq m_{nd} - m_{(n-1)d}$ and observe that $\sum_{i=1}^n x_i = m_{nd}$ and the Cesàro mean $\frac{1}{n} \sum_{i=1}^n x_i$ converges to $\frac{d}{u}$ by elementary renewal theorem.

Example 3.3. Consider a renewal process with $P\{X_n = 1\} = 1$, that is, there is a renewal at every positive integer time instant with unit probability. Then F is lattice with d = 1. Now, for a = 0.5, and $t_n = n + (-1)^n 0.5$, we see that $m_{t_n} = N_{t_n} = n - \mathbb{1}_{\{n \text{ odd}\}}$, and $m(t_n + a) = n$. It follows that $m_{t_n + a_n} - m_{t_n} = \mathbb{1}_{\{n \text{ odd}\}}$, and hence $\lim_{t_n \to \infty} m_{t_n + a} - m_{t_n}$ does not exist. It follows that $\lim_{t \to \infty} m_{t_n + a} - m_{t_n}$ does not exist

Remark 3. In the lattice case, if the inter arrivals are strictly positive, that is, there can be no more than one renewal at each *nd*, then we have that

$$\lim_{n\to\infty} P\left\{\text{renewal at } nd\right\} = \frac{d}{u}.$$

Corollary 3.4 (Delayed Blackwell's Theorem). Consider a delayed renewal process with independent interrenewal times, with the distribution of first renewal being G with mean μ_G , and the distribution of inter-renewal times for $n \ge 2$ being F with mean μ_F and the property $\inf\{x: F(x) = 1\} = \infty$. Let the associated renewal function be m^D and F is not lattice, then for all $a \ge 0$

$$\lim_{t\to\infty} m_{t+a}^D - m_t^D = \frac{a}{\mu_F}.$$

If F and G are lattice with period d, then

$$\lim_{n\to\infty} m_{(n+1)d}^D - m_{nd}^D = \frac{d}{\mu_F}.$$