
Lecture-13: Applications of Key Renewal Theorem

1 Age-dependent branching process

Consider a population, where each organism i lives for an i.i.d. random time period of Ti : Ω → R+

units with common distribution function F. Just before dying, each organism produces an i.i.d. random
number of offsprings N : Ω → Z+, with common distribution P. Let Xt denote the number of organisms
alive at time t. The stochastic process X : Ω → Z

R+
+ is called an age-dependent branching process.

This is a popular model in biology for population growth of various organisms. We are interested in
computing mt = EXt when n = E[N] = ∑j∈N jPj.

We will show that starting from an organism, the population including itself and its subsequent de-
scendants is regenerative process. Let T1 and N1 denote the life time and offsprings of the first organism.
If T1 > t, then Xt is still equal to X0 = 1. In this case, we have

E[Xt1{T1>t}
∣∣ FT1 ] = E[X01{T1>t}

∣∣ FT1 ] = 1{T1>t}.

If T1 ⩽ t, then XT1 = N1 and each of the offsprings start the population growth, independent of the
past, and stochastically identical to the population growth of the original organism starting at time T1.
Hence, we can write Xt1{T1⩽t} = ∑N1

i=1 Xi
t−T1

1{T1⩽t} for this case, where (Xi
T1+u,u ⩾ 0) is a stochastic

replica of (Xu,u ⩾ 0), and independent for each i ∈ N. Hence for this case, we can write the following
expectation conditioned on lifetime T1

E[Xt1{T1⩽t}
∣∣ FT1 ] = E[

N1

∑
i=1

Xi
t−T1

1{T1⩽t}
∣∣ FT1 ] = nmt−T11{T1⩽t}.

Combining two cases of {T1 > t} and {T1 ⩽ t}, we can write the mean function m as

m(t) = E[Xt1{T1>t}] + E[Xt1{T1⩽t}] = F̄(t) + n
∫ t

0
m(t − u)dF(u). (1)

This looks almost like a renewal function.

Theorem 1.1. The solution to (1) is given by

m(t) = F̄(t) +
∫ t

0
eαu F̄(t − u)dmG(u),

where dG(t)≜ ne−αtdF(t), mg = ∑n∈N G(n), and α is the unique solution to

1 =
∫ ∞

0
e−αtdF(t).

Proof. Multiplying both sides of the above equation by e−αt, we get

m(t)e−αt = e−αt F̄(t) + n
∫ t

0
e−α(t−u)m(t − u)e−αudF(u).

Let dG(t)≜ ne−αtdF(t), then the following choice of α > 0 ensures that G : R+ → [0,1] is a distribution
function on R+. In particular, let α be the unique solution to the equation

1 = n
∫ ∞

0
e−αtdF(t).
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With this choice of G, the above equation (1) is a delayed renewal equation for the function f (t) =
e−αtm(t) with the complementary distribution of first renewal time as H̄(t)≜ e−αt F̄(t) and the distribu-
tion of subsequent inter-renewal times being G. That is, we have for all t ∈ R+

f (t) = H̄(t) +
∫ t

0
f (t − u)dG(u).

That is, we have the renewal equation f = H̄ + f ∗ G with the delayed renewal time distribution H
and inter-renewal distribution G. Let mG ≜ ∑n∈N G(n) be the renewal function associated with the
inter-renewal time distribution G, then we observe that f = H̄ + H̄ ∗ mG is the solution to this renewal
equation (1), as we have H̄ + (H̄ + H̄ ∗ mG) ∗ G = H̄ + H̄ ∗ mG, and therefore

m(t)e−αt = e−αt F̄(t) +
∫ t

0
e−α(t−u) F̄(t − u)dmG(u).

Theorem 1.2. If X(0) = 1, m > 1 and F is non lattice, then

lim
t→∞

e−αtm(t) =
n − 1

n2α
∫ ∞

0 xe−αxdF(x)
,

where α > 0 is the unique solution to the equation n
∫ ∞

0 e−αxdF(x) = 1.

Proof. Since H̄(t) = e−αt F̄(t) is non-negative, monotone non-increasing, and integrable, it is directly
Riemann integrable. Hence, we can apply key renewal theorem to the limiting value of solution to
renewal equation to obtain

lim
t→∞

m(t)e−αt =
1

µG

∫ ∞

0
e−αt F̄(t)dt =

∫ ∞
0 e−αt F̄(t)dt

n
∫ ∞

0 te−αtdF(t)
.

Result follows from the integration by parts,∫ ∞

0
e−αt F̄(t)dt =

1
α
− 1

α

∫ ∞

0
e−αtdF(t) =

1
α

(
1 − 1

n

)
.

2 Equilibrium renewal process

Recall that the limiting distribution of age for a renewal process is given by the equilibrium distri-
bution Fe : R+ → [0,1] defined for an inter-renewal time distribution F as Fe(x) = 1

µF

∫ x
0 F̄(y)dy for all

x ⩾ 0.

Lemma 2.1. The moment generating function of Fe(x) is F̃e(s) =
1−F̃(s)

sµF
.

Proof. By definition, F̃e(s) = E
[
e−sX], where X is a random variable with distribution function Fe(x).

We use integration by parts, to write

F̃e(s) =
∫ ∞

0
e−sxdFe(x) =

1
sµF

− 1
sµF

∫ ∞

0
e−sxdF(x) =

1
sµ

(1 − F̃(s)).

Definition 2.2. A delayed renewal process with the initial arrival distribution G = Fe is called the equi-
librium renewal process.

Remark 1. Observe that Fe is the limiting distribution of the age and the excess time for the renewal
process with common inter-renewal distribution F. Hence, if we start observing a renewal process at
some arbitrarily large time t, then the observed renewal process is the equilibrium renewal process. This
delayed renewal process exhibits stationary properties. That is, the limiting behaviors are exhibited for
all times.

2



Theorem 2.3 (renewal function). The renewal function me(t) for the equilibrium renewal process is linear for
all times. That is, me(t) = t

µF
.

Proof. We know that the Laplace transform of renewal function me(t) is given by

m̃e(s) =
G̃(s)

1 − F̃(s)
=

F̃e(s)
1 − F̃(s)

=
1

sµF
. (2)

Further, we know that the Laplace transform of function t/µ is given by Lt/µ(s) = 1
µ

∫ ∞
0 e−sxdx = 1

sµ .

Since moment generating function is a one-to-one map, me(t) = t
µF

is the unique renewal function.

Theorem 2.4 (excess time). The distribution of excess time Ye(t) for the equilibrium renewal process is station-
ary. That is,

P{Ye(t)⩽ x} = Fe(x), t ⩾ 0. (3)

Proof. Since the excess time Ye(t) is regenerative process and dme(t) = 1/µF, we can write

P{Ye(t) > x} = F̄e(t + x) +
1

µF

∫ t

0
F̄(t + x − u)du = F̄e(t + x) +

1
µF

∫ t+x

x
F̄(y)dy = F̄e(x).

Theorem 2.5 (Age). The distribution of the age Ae(t) for the equilibrium renewal process is stationary. That is,

P{Ae(t)⩽ x} = Fe(x), t ⩾ 0. (4)

Proof.

P{Ae(t)⩾ x} = 1{t⩾x} F̄e(t) +
∫ t

0
dme(u)1{t−u⩾x} F̄(t − u)

= 1{t⩾x}

(
1 − 1

µF

∫ t

0
F̄(u)du

)
+

1
µF

∫ t

0
du1{t−u⩾x} F̄(t − u)

= 1{t⩾x}

(
1 − 1

µF

∫ t

0
F̄(u)du

)
+

1
µF

∫ t−x

0
du1{t−u⩾x} F̄(t − u)

= 1{t⩾x}

(
1 − 1

µF

∫ t

0
F̄(u)du

)
− 1

µF

∫ x

t
du1{u⩾x} F̄(u)

= 1{t⩾x}

(
1 − 1

µF

∫ t

0
F̄(u)du

)
+

1
µF

∫ t

x
du1{t⩾x} F̄(u)

= 1{t⩾x}

(
1 − 1

µF

∫ t

0
F̄(u)du +

1
µF

∫ t

x
du1{t⩾x} F̄(u)

)
= 1{t⩾x}

(
1 − 1

µF

∫ x

0
du1{t⩾x} F̄(u)

)
= 1{t⩾x}(1 − Fe(x))

= 1{t⩾x} F̄e(x).

Remark 2. When we start observing the counting process at time s, the observed renewal process is de-
layed renewal process with initial distribution Ye at time s being identical to the distribution Fe. Hence,
the number of renewals Ne(t + s)− Ne(s) has the same distribution as Ne(t) in duration t. That is, the
distribution of counting process is shift invariant.

Theorem 2.6 (stationary increments). The counting process Ne : Ω → Z
R+
+ for the equilibrium renewal

process has stationary increments.

Proof. The Laplace transform of Ne(t + s) − Ne(s) is identical to Laplace transform of Ne(t). Result
holds from the uniqueness of inverse of Laplace transforms.
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Example 2.7 (Poisson process). Consider the case, when inter-renewal time distribution F for a de-
lay renewal process is exponential with rate λ. Here, one would expect the equilibrium distribution
Fe = F, since Poisson process has stationary and independent increments. We observe that

Fe(x) =
1
µ

∫ x

0
F̄(y)dy = λ

∫ x

0
e−λydy = 1 − e−λx = F(x).

We see that Fe is also distributed exponentially with rate λ. Indeed, this is a Poisson process with
rate λ.
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