Lecture-14: Renewal Reward Processes

1 Renewal reward process

Definition 1.1. Consider a counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with renewal sequence $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$, where the *i.i.d.* inter-renewal time sequence is denoted by $X : \Omega \to \mathbb{R}_+^{\mathbb{N}}$ having common distribution F. At the end of each renewal interval $n \in \mathbb{N}$, a random reward $R_n : \Omega \to \mathbb{R}$ is earned at time S_n , where the reward R_n is possibly dependent on the duration X_n . Let $(X, R) : \Omega \to (\mathbb{R}_+ \times \mathbb{R})^{\mathbb{N}}$ be *i.i.d.*, then the **reward process** $Q : \Omega \to \mathbb{R}^{\mathbb{R}_+}$ is defined as the accumulated reward earned by time t as $Q_t \triangleq \sum_{i=1}^{N_t} R_i$.

Example 1.2. Consider a renewal sequence $S : \Omega \to \mathbb{R} + \mathbb{N}$ with *i.i.d.* inter-renewal time sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$. Consider an *i.i.d.* renewal sequence $R : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ defined as $R_n \triangleq 1$ for all $n \in \mathbb{N}$. Then the reward process $Q : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$ is the same as the counting process $N : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$ associated with the renewal sequence *S*.

Example 1.3. Consider a renewal sequence $S : \Omega \to \mathbb{R} + \mathbb{N}$ with *i.i.d.* inter-renewal time sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$. Consider an *i.i.d.* renewal sequence $R : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ defined as $R_n \triangleq X_n$ for all $n \in \mathbb{N}$. Then the reward process $Q : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$ is the last renewal instant $Q_t = S_{N_t}$ for all times $t \in \mathbb{R}_+$.

Theorem 1.4 (renewal reward). Consider a renewal reward process $Q : \Omega \to \mathbb{R}^{\mathbb{R}_+}$ with associated i.i.d. renewal reward sequence $(X, R) : \Omega \to (\mathbb{R}_+ \times \mathbb{R})^{\mathbb{N}}$ where the mean of absolute value of reward $\mathbb{E} |R_1|$ and mean of absolute value of renewal duration $\mathbb{E} |X_1|$ are finite. Then the empirical average of reward converges, almost surely and in mean, i.e.

$$\lim_{t \to \infty} \frac{Q_t}{t} = \frac{\mathbb{E}R_1}{\mathbb{E}X_1} a.s. , \qquad \qquad \lim_{t \to \infty} \frac{\mathbb{E}Q_t}{t} = \frac{\mathbb{E}R_1}{\mathbb{E}X_1}.$$

Proof. We can write the rate of accumulated reward as $\frac{Q_t}{t} = \left(\frac{Q_t}{N_t}\right) \left(\frac{N_t}{t}\right)$. From the strong law of large numbers we obtain that, $\lim_{t\to\infty} \frac{1}{N_t} \sum_{i=1}^{N_t} R_i = \mathbb{E}R_1$, and from the strong law for counting processes we have $\lim_{t\to\infty} \frac{N_t}{t} = \frac{1}{\mathbb{E}X_1}$.

Since $N_t + 1$ is a stopping time for the renewal reward sequence $((X_1, R_1), (X_2, R_2), ...)$, it follows from Wald's lemma,

$$\mathbb{E}Q_t = \mathbb{E}\left[\sum_{i=1}^{N_t} R_i\right] = \mathbb{E}\left[\sum_{i=1}^{N_t+1} R_i\right] - \mathbb{E}R_{N_t+1} = (m_t+1)\mathbb{E}R_1 - \mathbb{E}R_{N_t+1}.$$

Defining $g(t) \triangleq \mathbb{E}R_{N_t+1}$, using elementary renewal theorem, it suffices to show that $\lim_{t\to\infty} \frac{g(t)}{t} = 0$. Observe that R_{N_t+1} is a regenerative process with the regenerative sequence being the renewal instants *S*, since the *n*th segment is $\xi_n \triangleq (X_n, R_n)$ and the sequence (X, R) is *i.i.d*. Defining kernel function $K(t) \triangleq \mathbb{E}[R_{N_t+1}\mathbb{1}_{\{X_1>t\}}]$, we can write the renewal function for g(t) as

$$g(t) = \mathbb{E}[R_{N_t+1}\mathbb{1}_{\{X_1 > t\}}] + \mathbb{E}[R_{N_t+1}\mathbb{1}_{\{X_1 \le t\}}] = K(t) + \int_0^t g(t-u)dF(u).$$

We observe that the kernel function $K : \mathbb{R}_+ \to \mathbb{R}_+$ is bounded above as

$$K(t) \triangleq \mathbb{E}[R_{N_t+1}\mathbb{1}_{\{X_1>t\}}] = \int_t^\infty \mathbb{E}[R_1 \mid \{X_1=u\}] dF(u) \leqslant \int_t^\infty \mathbb{E}[|R_1| \mid \{X_1=u\}] dF(u).$$

Using the solution to renewal function, we can write g = (1 + m) * K in terms of renewal function m and kernel function K. From finiteness of $\mathbb{E}|R|$, it follows that $\lim_{t\to\infty} K(t) = 0$, and we can choose T such that $|K(u)| \leq \epsilon$ for all $u \geq T$. Hence, for all $t \geq T$, we have

$$\frac{|g(t)|}{t} \leq \frac{|K(t)|}{t} + \int_0^{t-T} \frac{|K(t-u)|}{t} dm(u) + \int_{t-T}^t \frac{|K(t-u)|}{t} dm(u)$$
$$\leq \frac{\epsilon}{t} + \frac{\epsilon m(t-T)}{t} + \mathbb{E} |R_1| \frac{(m(t) - m(t-T))}{t}.$$

Taking limits and applying elementary renewal and Blackwell's theorem, we get $\limsup_{t\to\infty} \frac{|g(t)|}{t} \leq \frac{\epsilon}{\mathbb{E}X_1}$. The result follows since $\epsilon > 0$ was arbitrary.

Lemma 1.5 (Inspection Paradox). For a renewal process $S : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ with inter-arrival times $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ and associated counting process $N : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$,

$$\mathbb{E}[X_{N_t+1}] \ge \mathbb{E}[X_1]$$

Proof. It suffices to show that $g(t) \triangleq P\{X_{N_t+1} > x\} \ge \overline{F}(x)$ for all $x, t \in \mathbb{R}_+$. To this end, we first observe that the segment of X_{N_t+1} during the *n*th renewal period $[S_{n-1}, S_n)$ is $\xi_n = (X_n, X_n)$. It follows that, X_{N_t+1} is a regenerative process with regeneration instants being the renewal sequence *S*. We can write the renewal equation for *g* as

$$g(t) = P\{X_{N_t+1} > x, S_1 > t\} + P\{X_{N_t+1} > x, S_1 \leq t\} = \overline{F}(x \lor t) + \mathbb{E}[g(t-S_1)\mathbb{1}_{\{S_1 \leq t\}}].$$

Defining kernel function $K : \mathbb{R}_+ \to [0,1]$ by $K(t) \triangleq P\{X_{N_t+1} > x, S_1 > t\} = \overline{F}(x \lor t)$, the solution to the renewal equation is given by g = K * (1 + m). That is, we can write

$$g(t) = \begin{cases} \bar{F}(x)(1+m(t)), & t \leq x, \\ 1+\int_{t-x}^{t}(\bar{F}(x)-\bar{F}(t-u))dm(u), & x < t. \end{cases}$$

Remark 1. R_{N_t+1} is possibly dependent on X_{N_t+1} . Hence, due to the inspection paradox, R_{N_t+1} is may have a different distribution to R_1 .

Need to revisit this

Lemma 1.6. Reward $R_{N(t)+1}$ at the next renewal has different distribution than R_1 .

Proof. Notice that $R_{N(t)+1}$ is related to $X_{N(t)+1}$ which is the length of the renewal interval containing the point *t*. We have seen that larger renewal intervals have a greater chance of containing *t*. That is, $X_{N(t)+1}$ tends to be larger than a ordinary renewal interval. Since $R_{N(t)+1}$ is a regenerative process, we can formally write its tail probability as

$$f(t) = P\{R_{N(t)+1} > x\} = K(t) + (m * K)(t),$$

where in terms of the distribution functions F, H for inter-renewal times and rewards we can write the the kernel

$$K(t) = P\{R_{N(t)+1} > x, X_1 > t\} = P\{R_1 > x, X_1 > t\} \leqslant F(t).$$

It follows that $f(t) \leq \overline{F}(t) + (m * \overline{F})(t) = 1$.

Lemma 1.7. *[jijiji]* HEAD Renewal reward theorem applies to a reward process R(t) that accrues reward continuously over a renewal duration. The total reward in a renewal duration X_n remains R_n as before, with the sequence($(X_n, R_n) : n \in \mathbb{N}$) being i.i.d. . ====== Renewal reward theorem applies to a reward process R(t)that accrues positive reward continuously over a renewal duration. The total reward in a renewal duration X_n remains R_n as before, with the sequence($(X_n, R_n) : n \in \mathbb{N}$) being iid. *¿¿¿¿¿¿ ? 516c998a3884b2c273f6d16145aac03f7af4963*

Proof. Let the process R(t) denote the accumulated reward till time t, when the reward accrual is continuous in time. Now, defining $R_n = R(S_n) - R(S_{n-1}) > 0$, it follows that

$$\frac{\sum_{n=1}^{N(t)} R_n}{t} \le \frac{R(t)}{t} \le \frac{\sum_{n=1}^{N(t)+1} R_n}{t}.$$

Result follows from application of strong law of large numbers.

1.1 Limiting empirical average of age and excess times

To determine the average value of the age of a renewal process, consider the following gradual reward process. We assume the reward rate to be equal to the age of the process at any time *t*, and

$$R(t) = \int_0^t A(u) du.$$

Observe that age is a linear increasing function of time in any renewal duration. In *n*th renewal duration, it increases from 0 to X_n , and the total reward $R_n = X_n^2/2$. Hence, we obtain from the renewal reward theorem

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t A(u) du = \frac{\mathbb{E}R_n}{\mathbb{E}X_n} = \frac{\mathbb{E}X^2}{2\mathbb{E}X}$$

Example 1.8. Since the accumulated excess time during one renewal cycle is $\int_0^{X_n} (X_n - t) dt$, the limiting empirical average of excess time $Y(t) = t - S_{N(t)}$ can be found using the renewal reward theorem is

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t Y(u) du = \frac{\mathbb{E}[X^2]}{2\mathbb{E}[X]}$$

Example 1.9. The limiting average of current renewal interval $X_{N(t)} = A(t) + Y(t) = S_{N(t)+1} - S_{N(t)}$ can be computed directly as the sum of two limiting averages, or from the application of renewal reward theorem with accrued reward in one renewal interval being $\int_0^{X_n} X_n dt = X_n^2$, to get

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t X_{N(u)+1} du = \frac{\mathbb{E}[X^2]}{\mathbb{E}[X]}$$

We see that this limit is always greater than $\mathbb{E}[X]$, except when X is constant. Such a result was to be expected in view of the inspection paradox, since we can show that $\lim_{t\to\infty} \mathbb{E}[X_{N(t)+1}] = \lim_{t\to\infty} \frac{1}{t} \int_0^t X_{N(u)+1} du$.

Example 1.10. It can be shown, under certain regularity conditions, that

$$\lim_{t\to\infty} \mathbb{E}R_{N(t)+1} = \lim_{t\to\infty} \frac{1}{t} \int_0^t R_{N(u)+1} du = \frac{\mathbb{E}[R_1X_1]}{\mathbb{E}[X_1]}.$$

If reward is a monotonically increasing function of renewal interval, then we get that $\lim_{t\to\infty} \mathbb{E}R_{N(t)+1} \ge \mathbb{E}R_1$ from Chebyshev's inequality.

1.2 Stationary probability and empirical average

Theorem 1.11. For an alternative renewal process $W = \{W(t) \in \{0,1\} : t \ge 0\}$ the stationary probability of being on is same as the limiting average time spent in the on duration if the renewal duration has finite mean. That is,

$$\lim_{t \to \infty} P\{W(t) = 1\} = \lim_{t \to \infty} \frac{1}{t} \int_0^t W(u) du.$$

Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate reward in one renewal duration X_n is the on time Z_n in that duration.

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t W(u)du = \lim_{t\to\infty}\frac{R(t)}{t} = \frac{\mathbb{E}Z_n}{\mathbb{E}X_n} = \lim_{t\to\infty}P(\text{ on at time } t).$$

1.3 Patterns

Let $X : \Omega \to \{0,1\}^{\mathbb{N}}$ be a *i.i.d.* Bernoulli sequence with $\mathbb{E}[X_1] = p$. Let $x = (x_1, \dots, x_m)$ be a pattern and define the first hitting time of the pattern x as $S_x \triangleq \inf\{n \in \mathbb{N} : X_n = x_m, X_{n-1} = x_{m-1}, \dots, X_{n-m+1} = x_1\}$. So, one can see that $(S_x^n, n \in \mathbb{N})$ is a delayed renewal sequence with *i.i.d.* inter-arrival times $T_x^k \triangleq S_x^k - S_x^{k-1}$, $k \ge 2$.

Example 1.12. Let us say that the pattern is (1). So, $P(S_1 = k) = (1 - p)^{k-1}p$ and $\mathbb{E}[S_1] = 1/p$.

Example 1.13. Let us say that the pattern is (0,1). So,

$$\begin{split} \mathbb{E}[S_x] &= \mathbb{E}[S_x \mathbb{1}_{\{X_1=0\}}] + \mathbb{E}[S_x \mathbb{1}_{\{X_1=1\}}] \\ &= \mathbb{E}[S_x \mathbb{1}_{\{X_1=0,X_2=1\}}] + \mathbb{E}[S_x \mathbb{1}_{\{X_1=0,X_2=0\}}] + \mathbb{E}[S_x \mathbb{1}_{\{X_1=1\}}] \\ &= \mathbb{E}[(1+S'_x) \mathbb{1}_{\{X_1=1\}}] + \mathbb{E}[S_x \mathbb{1}_{\{X_1=0,X_2=1\}}] + \mathbb{E}[S_x \mathbb{1}_{\{X_1=0,X_2=0\}}] \\ &= p\mathbb{E}[S_x] + p + 2p\bar{p} + \bar{p}\mathbb{E}[(1+S_x) \mathbb{1}_{\{X_1=0\}}]. \end{split}$$

See that

$$\mathbb{E}[S_x \mathbb{1}_{\{X_1=0\}}] = 2p\bar{p} + \bar{p}\mathbb{E}[(1+S_x)\mathbb{1}_{\{X_1=0\}}]$$
$$= 2p\bar{p} + \bar{p}^2 + \bar{p}\mathbb{E}[S_x \mathbb{1}_{\{X_1=0\}}]$$
$$\mathbb{E}[S_x \mathbb{1}_{\{X_1=0\}}] = \frac{2p\bar{p} + \bar{p}^2}{1-\bar{p}}.$$

Hence, $\mathbb{E}[S_x] = 1/p\bar{p}$.

2 Patterns

Let $(X_n \in \{0,1\} : n \in \mathbb{N})$ be an *iid* Bernoulli sequence with common mean $\mathbb{E}X_n = p$. Then, we are interested in finding the mean time to find first occurrence of a string pattern. We define the first hitting time to a pattern $x = (x_1, ..., x_p)$ as

$$S_x \triangleq \inf\{n \in \mathbb{N} : X_n = x_p, \dots, X_{n-p+1} = x_1\}.$$

Let S_x^k be the *k*th time the process *X* hits patten *x*, where

$$S_x^k \triangleq \inf\{n > S_x^{k-1} : X_n = x_p, \dots, X_{n-p+1} = x_1\}.$$

It follows that $(S_x^k : k \in \mathbb{N})$ forms a delayed renewal sequence, where $T_x(k) \triangleq S_x^k - S_x^{k-1}$ are *iid* for $k \ge 2$.

2.1 Hitting time to pattern (1)

First we consider the simplest example when x = (1). One way to solve this problem is to consider S_x as a random variable and find its distribution. For example, when x = 1 we can write

$$P\{S_1=k\}=\bar{p}^{k-1}p.$$

We observe that S_1 is a geometric random variable of the time to first success, with its mean as the reciprocal of *iid* failure probability \bar{p} . Second way to solve this is via renewal function approach. We can write

$$\mathbb{E}S_1 = \mathbb{E}S_1 \mathbb{1}_{\{X_1=0\}} + \mathbb{E}S_1 \mathbb{1}_{\{X_1=1\}} = \bar{p} + p\mathbb{E}(1+S_1) = 1 + p\mathbb{E}S_1.$$

2.2 Hitting time to pattern (0,1)

We consider the two length pattern x = (0,1), then $S_x = \inf\{n \in \mathbb{N} : X_n = 1, X_{n-1} = 0\}$. We can again model this hitting time as a random variable, however finding its distribution is slightly more complicated. We next attempt the renewal function approach, to get

$$\mathbb{E}S_x = \mathbb{E}S_x \mathbf{1}_{\{X_1=0\}} + \mathbb{E}S_x \mathbf{1}_{\{X_1=1\}} = \mathbb{E}S_x \mathbf{1}_{\{X_2=1,X_0=0\}} + \mathbb{E}S_x \mathbf{1}_{\{X_2=0,X_1=0\}} + p\mathbb{E}(1+S_x).$$

We recognize that the second term on the right hand side can be written as

$$\mathbb{E}S_{x}1_{\{X_{2}=0,X_{1}=0\}} = \bar{p}\mathbb{E}(1+S_{x})1_{\{X_{1}=0\}} = \bar{p}^{2} + \bar{p}\mathbb{E}S_{x}1_{\{X_{1}=0\}} = \bar{p}^{2} + \bar{p}\mathbb{E}S_{x} - \bar{p}p\mathbb{E}(1+S_{x}).$$

Combining the above two results, we can write

$$\mathbb{E}S_{x} = 2p\bar{p} + \bar{p}^{2} + \bar{p}\mathbb{E}S_{x} + p^{2}\mathbb{E}(1+S_{x}) = 1 + (\bar{p} + p^{2})\mathbb{E}S_{x}.$$

2.3 Hitting time to pattern *x*

A general approach is to model $X_n^p = (X_n, X_{n-1}, X_{n-p+1})$ as a *p*-dimensional Markov chain, and find the hitting time to state *x* of the joint process $X^p = (X_n^p : n \in \mathbb{N})$. We observe that successive times to hit a pattern *x* is a delayed renewal process in general. If the time to hit pattern *x* is same as time duration between two successive hits to pattern *x*, these instants form a renewal process. From the renewal reward process, we can write the mean inter-renewal duration as the number of hits to pattern *x*, as

$$\mathbb{E}(S_x^k - S_x^{k-1}) = \lim_{n \to \infty} \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{X_n^p = x\}} = \lim_{n \to \infty} \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{X_n = x_p, \dots, X_{n-p+1} = x_1\}} = P\{X_n = x_p, \dots, X_{n-p+1} = x_1\}.$$

Mean hitting time to pattern *x* is equal to mean hitting time to a sub-pattern, and then hitting time from the sub-pattern to the pattern *x*. That is, in general we can write

$$\mathbb{E}T_x = \mathbb{E}T_x$$

A Chebyshev's sum inequality

Theorem A.1. Consider two non-decreasing positive measurable functions $f, g : \mathbb{R} \to \mathbb{R}_+$ and a random variable $X : \Omega \to \mathbb{R}$. Then, $\mathbb{E}f(X)g(X) \ge \mathbb{E}f(X)\mathbb{E}g(X)$.

Proof. Consider a random sequence $Y : \Omega \to \mathbb{R}^2$ to be *i.i.d.* replicas of $X : \Omega \to \mathbb{R}$ and the product $(f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2))$. For non-decreasing functions f, g, we have

$$(f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) = (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 \ge Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2))(g(Y_1) - g(Y_2)) \mathbb{1}_{\{Y_1 < Y_2\}} + (f(Y_1) - f(Y_2))(g(Y_1) - g(Y_2))(g(Y_1) - g(Y_2)$$

Defining $m_f \triangleq \mathbb{E}f(X)$ and $m_g \triangleq \mathbb{E}g(X)$, we observe that since f, g are increasing, so are $f - m_f$ and $g - m_g$. Let $x_f \triangleq \inf \{x \in \mathbb{R} : f(x) - m_f \ge 0\}$ and $x_g \triangleq \inf \{x \in \mathbb{R} : g(x) - m_g \ge 0\}$. Then, for $x < x_f \land x_g$ and $x > x_f \lor x_g$ we have $(f - m_f)(g - m_g) \ge 0$ and