
Lecture-14: Renewal Reward Processes

1 Renewal reward process

Definition 1.1. Consider a counting process N : Ω → Z
R+
+ associated with renewal sequence S : Ω →

RN
+ , where the i.i.d. inter-renewal time sequence is denoted by X : Ω →RN

+ having common distribution
F. At the end of each renewal interval n ∈ N, a random reward Rn : Ω → R is earned at time Sn, where
the reward Rn is possibly dependent on the duration Xn. Let (X, R) : Ω → (R+ ×R)N be i.i.d. , then the
reward process Q : Ω → RR+ is defined as the accumulated reward earned by time t as Qt ≜ ∑Nt

i=1 Ri.

t

Qt

S1 S2 SNt t SNt+1

R1

∑2
i=1 Ri

∑Nt
i=1 Ri

∑Nt+1
i=1 Ri

Example 1.2. Consider a renewal sequence S : Ω → R+N with i.i.d. inter-renewal time sequence
X : Ω → RN

+ . Consider an i.i.d. renewal sequence R : Ω → RN
+ defined as Rn ≜ 1 for all n ∈ N. Then

the reward process Q : Ω → Z
R+
+ is the same as the counting process N : Ω → Z

R+
+ associated with

the renewal sequence S.

Example 1.3. Consider a renewal sequence S : Ω → R+N with i.i.d. inter-renewal time sequence
X : Ω → RN

+ . Consider an i.i.d. renewal sequence R : Ω → RN
+ defined as Rn ≜ Xn for all n ∈ N.

Then the reward process Q : Ω → Z
R+
+ is the last renewal instant Qt = SNt for all times t ∈ R+.

Theorem 1.4 (renewal reward). Consider a renewal reward process Q : Ω → RR+ with associated i.i.d. re-
newal reward sequence (X, R) : Ω → (R+ × R)N where the mean of absolute value of reward E |R1| and mean
of absolute value of renewal duration E |X1| are finite. Then the empirical average of reward converges, almost
surely and in mean, i.e.

lim
t→∞

Qt

t
=

ER1

EX1
a.s. , lim

t→∞

EQt

t
=

ER1

EX1
.

Proof. We can write the rate of accumulated reward as Qt
t =

(
Qt
Nt

)(
Nt
t

)
. From the strong law of large

numbers we obtain that, limt→∞
1

Nt
∑Nt

i=1 Ri = ER1, and from the strong law for counting processes we

have limt→∞
Nt
t = 1

EX1
.
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Since Nt + 1 is a stopping time for the renewal reward sequence ((X1, R1), (X2, R2), . . . ), it follows
from Wald’s lemma,

EQt = E

[
Nt

∑
i=1

Ri

]
= E

[
Nt+1

∑
i=1

Ri

]
− ERNt+1 = (mt + 1)ER1 − ERNt+1.

Defining g(t) ≜ ERNt+1, using elementary renewal theorem, it suffices to show that limt→∞
g(t)

t = 0.
Observe that RNt+1 is a regenerative process with the regenerative sequence being the renewal instants
S, since the nth segment is ξn ≜ (Xn, Rn) and the sequence (X, R) is i.i.d. . Defining kernel function
K(t)≜ E[RNt+11{X1>t}], we can write the renewal function for g(t) as

g(t) = E[RNt+11{X1>t}] + E[RNt+11{X1⩽t}] = K(t) +
∫ t

0
g(t − u)dF(u).

We observe that the kernel function K : R+ → R+ is bounded above as

K(t)≜ E[RNt+11{X1>t}] =
∫ ∞

t
E[R1 | {X1 = u}]dF(u)⩽

∫ ∞

t
E[|R1| | {X1 = u}]dF(u).

Using the solution to renewal function, we can write g = (1 + m) ∗ K in terms of renewal function m
and kernel function K. From finiteness of E|R|, it follows that limt→∞ K(t) = 0, and we can choose T
such that |K(u)|⩽ ϵ for all u ⩾ T. Hence, for all t ⩾ T, we have

|g(t)|
t

⩽
|K(t)|

t
+

∫ t−T

0

|K(t − u)|
t

dm(u) +
∫ t

t−T

|K(t − u)|
t

dm(u)

⩽
ϵ

t
+

ϵm(t − T)
t

+ E |R1|
(m(t)− m(t − T))

t
.

Taking limits and applying elementary renewal and Blackwell’s theorem, we get limsupt→∞
|g(t)|

t ⩽
ϵ

EX1
. The result follows since ϵ > 0 was arbitrary.

Lemma 1.5 (Inspection Paradox). For a renewal process S : Ω → RN
+ with inter-arrival times X : Ω → RN

+

and associated counting process N : Ω → Z
R+
+ ,

E[XNt+1]⩾ E[X1]

Proof. It suffices to show that g(t)≜ P{XNt+1 > x}⩾ F̄(x) for all x, t ∈ R+. To this end, we first observe
that the segment of XNt+1 during the nth renewal period [Sn−1,Sn) is ξn = (Xn, Xn). It follows that,
XNt+1 is a regenerative process with regeneration instants being the renewal sequence S. We can write
the renewal equation for g as

g(t) = P{XNt+1 > x,S1 > t}+ P{XNt+1 > x,S1 ⩽ t} = F̄(x ∨ t) + E[g(t − S1)1{S1⩽t}].

Defining kernel function K : R+ → [0,1] by K(t) ≜ P{XNt+1 > x,S1 > t} = F̄(x ∨ t), the solution to the
renewal equation is given by g = K ∗ (1 + m). That is, we can write

g(t) =

{
F̄(x)(1 + m(t)), t ⩽ x,
1 +

∫ t
t−x(F̄(x)− F̄(t − u))dm(u), x < t.

Remark 1. RNt+1 is possibly dependent on XNt+1. Hence, due to the inspection paradox, RNt+1 is may
have a different distribution to R1.

Need to revisit this

Lemma 1.6. Reward RN(t)+1 at the next renewal has different distribution than R1.

Proof. Notice that RN(t)+1 is related to XN(t)+1 which is the length of the renewal interval containing
the point t. We have seen that larger renewal intervals have a greater chance of containing t. That is,
XN(t)+1 tends to be larger than a ordinary renewal interval. Since RN(t)+1 is a regenerative process, we
can formally write its tail probability as

f (t) = P{RN(t)+1 > x} = K(t) + (m ∗ K)(t),
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where in terms of the distribution functions F, H for inter-renewal times and rewards we can write the
the kernel

K(t) = P{RN(t)+1 > x, X1 > t} = P{R1 > x, X1 > t}⩽ F̄(t).

It follows that f (t)⩽ F̄(t) + (m ∗ F̄)(t) = 1.

Lemma 1.7. ¡¡¡¡¡¡¡ HEAD Renewal reward theorem applies to a reward process R(t) that accrues reward con-
tinuously over a renewal duration. The total reward in a renewal duration Xn remains Rn as before, with the
sequence((Xn, Rn) : n ∈ N) being i.i.d. . ======= Renewal reward theorem applies to a reward process R(t)
that accrues positive reward continuously over a renewal duration. The total reward in a renewal duration Xn re-
mains Rn as before, with the sequence((Xn, Rn) : n∈N) being iid. ¿¿¿¿¿¿¿ 7516c998a3884b2c273f6d16145aac03f7af4963

Proof. Let the process R(t) denote the accumulated reward till time t, when the reward accrual is con-
tinuous in time. Now, defining Rn = R(Sn)− R(Sn−1) > 0, it follows that

∑
N(t)
n=1 Rn

t
≤ R(t)

t
≤ ∑

N(t)+1
n=1 Rn

t
.

Result follows from application of strong law of large numbers.

1.1 Limiting empirical average of age and excess times

To determine the average value of the age of a renewal process, consider the following gradual reward
process. We assume the reward rate to be equal to the age of the process at any time t, and

R(t) =
∫ t

0
A(u)du.

Observe that age is a linear increasing function of time in any renewal duration. In nth renewal du-
ration, it increases from 0 to Xn, and the total reward Rn = X2

n/2. Hence, we obtain from the renewal
reward theorem

lim
t→∞

1
t

∫ t

0
A(u)du =

ERn

EXn
=

EX2

2EX
.

Example 1.8. Since the accumulated excess time during one renewal cycle is
∫ Xn

0 (Xn − t)dt, the
limiting empirical average of excess time Y(t) = t − SN(t) can be found using the renewal reward
theorem is

lim
t→∞

1
t

∫ t

0
Y(u)du =

E[X2]

2E[X]
.

Example 1.9. The limiting average of current renewal interval XN(t) = A(t)+Y(t) = SN(t)+1 − SN(t)
can be computed directly as the sum of two limiting averages, or from the application of renewal
reward theorem with accrued reward in one renewal interval being

∫ Xn
0 Xndt = X2

n, to get

lim
t→∞

1
t

∫ t

0
XN(u)+1du =

E[X2]

E[X]
.

We see that this limit is always greater than E[X], except when X is constant. Such a result was
to be expected in view of the inspection paradox, since we can show that limt→∞ E[XN(t)+1] =

limt→∞
1
t
∫ t

0 XN(u)+1du.

Example 1.10. It can be shown, under certain regularity conditions, that

lim
t→∞

ERN(t)+1 = lim
t→∞

1
t

∫ t

0
RN(u)+1du =

E[R1X1]

E[X1]
.

If reward is a monotonically increasing function of renewal interval, then we get that
limt→∞ ERN(t)+1 ⩾ ER1 from Chebyshev’s inequality.

3



1.2 Stationary probability and empirical average

Theorem 1.11. For an alternative renewal process W = {W(t) ∈ {0,1} : t ⩾ 0} the stationary probability of
being on is same as the limiting average time spent in the on duration if the renewal duration has finite mean.
That is,

lim
t→∞

P{W(t) = 1} = lim
t→∞

1
t

∫ t

0
W(u)du.

Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate
reward in one renewal duration Xn is the on time Zn in that duration.

lim
t→∞

1
t

∫ t

0
W(u)du = lim

t→∞

R(t)
t

=
EZn

EXn
= lim

t→∞
P(on at time t).

1.3 Patterns

Let X : Ω → {0,1}N be a i.i.d. Bernoulli sequence with E[X1] = p. Let x = (x1, · · · , xm) be a pattern and
define the first hitting time of the pattern x as Sx ≜ inf{n ∈N : Xn = xm, Xn−1 = xm−1, · · · , Xn−m+1 = x1}.
So, one can see that (Sn

x ,n ∈ N) is a delayed renewal sequence with i.i.d. inter-arrival times Tk
x ≜ Sk

x −
Sk−1

x ,k ⩾ 2.

Example 1.12. Let us say that the pattern is (1). So, P(S1 = k) = (1 − p)k−1 p and E[S1] = 1/p.

Example 1.13. Let us say that the pattern is (0,1). So,

E[Sx] = E[Sx1{X1=0}] + E[Sx1{X1=1}]

= E[Sx1{X1=0,X2=1}] + E[Sx1{X1=0,X2=0}] + E[Sx1{X1=1}]

= E[(1 + S′
x)1{X1=1}] + E[Sx1{X1=0,X2=1}] + E[Sx1{X1=0,X2=0}]

= pE[Sx] + p + 2pp̄ + p̄E[(1 + Sx)1{X1=0}].

See that

E[Sx1{X1=0}] = 2pp̄ + p̄E[(1 + Sx)1{X1=0}]

= 2pp̄ + p̄2 + p̄E[Sx1{X1=0}]

E[Sx1{X1=0}] =
2pp̄ + p̄2

1 − p̄
.

Hence, E[Sx] = 1/pp̄.

2 Patterns

Let (Xn ∈ {0,1} : n ∈ N) be an iid Bernoulli sequence with common mean EXn = p. Then, we are
interested in finding the mean time to find first occurrence of a string pattern. We define the first hitting
time to a pattern x = (x1, . . . , xp) as

Sx ≜ inf{n ∈ N : Xn = xp, . . . , Xn−p+1 = x1}.

Let Sk
x be the kth time the process X hits patten x, where

Sk
x ≜ inf{n > Sk−1

x : Xn = xp, . . . , Xn−p+1 = x1}.

It follows that (Sk
x : k ∈ N) forms a delayed renewal sequence, where Tx(k)≜ Sk

x − Sk−1
x are iid for k ⩾ 2.
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2.1 Hitting time to pattern (1)

First we consider the simplest example when x = (1). One way to solve this problem is to consider Sx
as a random variable and find its distribution. For example, when x = 1 we can write

P{S1 = k} = p̄k−1 p.

We observe that S1 is a geometric random variable of the time to first success, with its mean as the
reciprocal of iid failure probability p̄. Second way to solve this is via renewal function approach. We
can write

ES1 = ES11{X1=0} + ES11{X1=1} = p̄ + pE(1 + S1) = 1 + pES1.

2.2 Hitting time to pattern (0,1)

We consider the two length pattern x = (0,1), then Sx = inf{n ∈ N : Xn = 1, Xn−1 = 0}. We can again
model this hitting time as a random variable, however finding its distribution is slightly more compli-
cated. We next attempt the renewal function approach, to get

ESx = ESx1{X1=0} + ESx1{X1=1} = ESx1{X2=1,X0=0} + ESx1{X2=0,X1=0} + pE(1 + Sx).

We recognize that the second term on the right hand side can be written as

ESx1{X2=0,X1=0} = p̄E(1 + Sx)1{X1=0} = p̄2 + p̄ESx1{X1=0} = p̄2 + p̄ESx − p̄pE(1 + Sx).

Combining the above two results, we can write

ESx = 2pp̄ + p̄2 + p̄ESx + p2E(1 + Sx) = 1 + ( p̄ + p2)ESx.

2.3 Hitting time to pattern x

A general approach is to model Xp
n = (Xn, Xn−1, Xn−p+1) as a p-dimensional Markov chain, and find

the hitting time to state x of the joint process Xp = (Xp
n : n ∈ N). We observe that successive times

to hit a pattern x is a delayed renewal process in general. If the time to hit pattern x is same as time
duration between two successive hits to pattern x, these instants form a renewal process. From the
renewal reward process, we can write the mean inter-renewal duration as the number of hits to pattern
x, as

E(Sk
x − Sk−1

x ) = lim
n→∞

1
N

N

∑
n=1

1{Xp
n=x} = lim

n→∞

1
N

N

∑
n=1

1{Xn=xp ,...,Xn−p+1=x1} = P{Xn = xp, . . . , Xn−p+1 = x1}.

Mean hitting time to pattern x is equal to mean hitting time to a sub-pattern, and then hitting time from
the sub-pattern to the pattern x. That is, in general we can write

ETx = ETx

A Chebyshev’s sum inequality

Theorem A.1. Consider two non-decreasing positive measurable functions f , g : R→R+ and a random variable
X : Ω → R. Then, E f (X)g(X)⩾ E f (X)Eg(X).

Proof. Consider a random sequence Y : Ω → R2 to be i.i.d. replicas of X : Ω → R and the product
( f (Y1)− f (Y2))(g(Y1)− g(Y2)). For non-decreasing functions f , g, we have

( f (Y1)− f (Y2))(g(Y1)− g(Y2)) = ( f (Y1)− f (Y2))(g(Y1)− g(Y2))1{Y1⩾Y2}+( f (Y1)− f (Y2))(g(Y1)− g(Y2))1{Y1<Y2}.

Defining m f ≜ E f (X) and mg ≜ Eg(X), we observe that since f , g are increasing, so are f − m f and

g−mg. Let x f ≜ inf
{

x ∈ R : f (x)− m f ⩾ 0
}

and xg ≜ inf
{

x ∈ R : g(x)− mg ⩾ 0
}

. Then, for x < x f ∧ xg

and x > x f ∨ xg we have ( f − m f )(g − mg)⩾ 0 and
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