Lecture-14: Renewal Reward Processes

1 Renewal reward process

Definition 1.1. Consider a counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$associated with renewal sequence $S: \Omega \rightarrow$ $\mathbb{R}_{+}^{\mathbb{N}}$, where the i.i.d. inter-renewal time sequence is denoted by $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ having common distribution F. At the end of each renewal interval $n \in \mathbb{N}$, a random reward $R_{n}: \Omega \rightarrow \mathbb{R}$ is earned at time S_{n}, where the reward R_{n} is possibly dependent on the duration X_{n}. Let $(X, R): \Omega \rightarrow\left(\mathbb{R}_{+} \times \mathbb{R}\right)^{\mathbb{N}}$ be i.i.d. , then the reward process $Q: \Omega \rightarrow \mathbb{R}^{\mathbb{R}_{+}}$is defined as the accumulated reward earned by time t as $Q_{t} \triangleq \sum_{i=1}^{N_{t}} R_{i}$.

Example 1.2. Consider a renewal sequence $S: \Omega \rightarrow \mathbb{R}+{ }^{\mathbb{N}}$ with i.i.d. inter-renewal time sequence $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$. Consider an i.i.d. renewal sequence $R: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ defined as $R_{n} \triangleq 1$ for all $n \in \mathbb{N}$. Then the reward process $Q: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is the same as the counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$associated with the renewal sequence S.

Example 1.3. Consider a renewal sequence $S: \Omega \rightarrow \mathbb{R}+{ }^{N}$ with i.i.d. inter-renewal time sequence $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$. Consider an i.i.d. renewal sequence $R: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ defined as $R_{n} \triangleq X_{n}$ for all $n \in \mathbb{N}$. Then the reward process $Q: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is the last renewal instant $Q_{t}=S_{N_{t}}$ for all times $t \in \mathbb{R}_{+}$.

Theorem 1.4 (renewal reward). Consider a renewal reward process $Q: \Omega \rightarrow \mathbb{R}^{\mathbb{R}_{+}}$with associated i.i.d. renewal reward sequence $(X, R): \Omega \rightarrow\left(\mathbb{R}_{+} \times \mathbb{R}\right)^{\mathbb{N}}$ where the mean of absolute value of reward $\mathbb{E}\left|R_{1}\right|$ and mean of absolute value of renewal duration $\mathbb{E}\left|X_{1}\right|$ are finite. Then the empirical average of reward converges, almost surely and in mean, i.e.

$$
\lim _{t \rightarrow \infty} \frac{Q_{t}}{t}=\frac{\mathbb{E} R_{1}}{\mathbb{E} X_{1}} \text { a.s., } \quad \lim _{t \rightarrow \infty} \frac{\mathbb{E} Q_{t}}{t}=\frac{\mathbb{E} R_{1}}{\mathbb{E} X_{1}}
$$

Proof. We can write the rate of accumulated reward as $\frac{Q_{t}}{t}=\left(\frac{Q_{t}}{N_{t}}\right)\left(\frac{N_{t}}{t}\right)$. From the strong law of large numbers we obtain that, $\lim _{t \rightarrow \infty} \frac{1}{N_{t}} \sum_{i=1}^{N_{t}} R_{i}=\mathbb{E} R_{1}$, and from the strong law for counting processes we have $\lim _{t \rightarrow \infty} \frac{N_{t}}{t}=\frac{1}{\mathbb{E} X_{1}}$.

Since $N_{t}+1$ is a stopping time for the renewal reward sequence $\left(\left(X_{1}, R_{1}\right),\left(X_{2}, R_{2}\right), \ldots\right)$, it follows from Wald's lemma,

$$
\mathbb{E} Q_{t}=\mathbb{E}\left[\sum_{i=1}^{N_{t}} R_{i}\right]=\mathbb{E}\left[\sum_{i=1}^{N_{t}+1} R_{i}\right]-\mathbb{E} R_{N_{t}+1}=\left(m_{t}+1\right) \mathbb{E} R_{1}-\mathbb{E} R_{N_{t}+1}
$$

Defining $g(t) \triangleq \mathbb{E} R_{N_{t}+1}$, using elementary renewal theorem, it suffices to show that $\lim _{t \rightarrow \infty} \frac{g(t)}{t}=0$. Observe that $R_{N_{t}+1}$ is a regenerative process with the regenerative sequence being the renewal instants S, since the nth segment is $\xi_{n} \triangleq\left(X_{n}, R_{n}\right)$ and the sequence (X, R) is i.i.d. . Defining kernel function $K(t) \triangleq \mathbb{E}\left[R_{N_{t}+1} \mathbb{1}_{\left\{X_{1}>t\right\}}\right]$, we can write the renewal function for $g(t)$ as

$$
g(t)=\mathbb{E}\left[R_{N_{t}+1} \mathbb{1}_{\left\{X_{1}>t\right\}}\right]+\mathbb{E}\left[R_{N_{t}+1} \mathbb{1}_{\left\{X_{1} \leqslant t\right\}}\right]=K(t)+\int_{0}^{t} g(t-u) d F(u) .
$$

We observe that the kernel function $K: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is bounded above as

$$
K(t) \triangleq \mathbb{E}\left[R_{N_{t}+1} \mathbb{1}_{\left\{X_{1}>t\right\}}\right]=\int_{t}^{\infty} \mathbb{E}\left[R_{1} \mid\left\{X_{1}=u\right\}\right] d F(u) \leqslant \int_{t}^{\infty} \mathbb{E}\left[\left|R_{1}\right| \mid\left\{X_{1}=u\right\}\right] d F(u) .
$$

Using the solution to renewal function, we can write $g=(1+m) * K$ in terms of renewal function m and kernel function K. From finiteness of $\mathbb{E}|R|$, it follows that $\lim _{t \rightarrow \infty} K(t)=0$, and we can choose T such that $|K(u)| \leqslant \epsilon$ for all $u \geqslant T$. Hence, for all $t \geqslant T$, we have

$$
\begin{aligned}
\frac{|g(t)|}{t} & \leqslant \frac{|K(t)|}{t}+\int_{0}^{t-T} \frac{|K(t-u)|}{t} d m(u)+\int_{t-T}^{t} \frac{|K(t-u)|}{t} d m(u) \\
& \leqslant \frac{\epsilon}{t}+\frac{\epsilon m(t-T)}{t}+\mathbb{E}\left|R_{1}\right| \frac{(m(t)-m(t-T))}{t} .
\end{aligned}
$$

Taking limits and applying elementary renewal and Blackwell's theorem, we get limsup $\operatorname{lom}_{t \rightarrow \infty} \frac{|g(t)|}{t} \leqslant$ $\frac{\epsilon}{\mathrm{E} X_{1}}$. The result follows since $\epsilon>0$ was arbitrary.

Lemma 1.5 (Inspection Paradox). For a renewal process $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ with inter-arrival times $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ and associated counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$,

$$
\mathbb{E}\left[X_{N_{t}+1}\right] \geqslant \mathbb{E}\left[X_{1}\right]
$$

Proof. It suffices to show that $g(t) \triangleq P\left\{X_{N_{t}+1}>x\right\} \geqslant \bar{F}(x)$ for all $x, t \in \mathbb{R}_{+}$. To this end, we first observe that the segment of $X_{N_{t}+1}$ during the nth renewal period [$\left.S_{n-1}, S_{n}\right)$ is $\xi_{n}=\left(X_{n}, X_{n}\right)$. It follows that, $X_{N_{t}+1}$ is a regenerative process with regeneration instants being the renewal sequence S. We can write the renewal equation for g as

$$
g(t)=P\left\{X_{N_{t}+1}>x, S_{1}>t\right\}+P\left\{X_{N_{t}+1}>x, S_{1} \leqslant t\right\}=\bar{F}(x \vee t)+\mathbb{E}\left[g\left(t-S_{1}\right) \mathbb{1}_{\left\{S_{1} \leqslant t\right\}}\right] .
$$

Defining kernel function $K: \mathbb{R}_{+} \rightarrow[0,1]$ by $K(t) \triangleq P\left\{X_{N_{t}+1}>x, S_{1}>t\right\}=\bar{F}(x \vee t)$, the solution to the renewal equation is given by $g=K *(1+m)$. That is, we can write

$$
g(t)= \begin{cases}\bar{F}(x)(1+m(t)), & t \leqslant x \\ 1+\int_{t-x}^{t}(\bar{F}(x)-\bar{F}(t-u)) d m(u), & x<t\end{cases}
$$

Remark 1. $R_{N_{t}+1}$ is possibly dependent on $X_{N_{t}+1}$. Hence, due to the inspection paradox, $R_{N_{t}+1}$ is may have a different distribution to R_{1}.

Need to revisit this
Lemma 1.6. Reward $R_{N(t)+1}$ at the next renewal has different distribution than R_{1}.
Proof. Notice that $R_{N(t)+1}$ is related to $X_{N(t)+1}$ which is the length of the renewal interval containing the point t. We have seen that larger renewal intervals have a greater chance of containing t. That is, $X_{N(t)+1}$ tends to be larger than a ordinary renewal interval. Since $R_{N(t)+1}$ is a regenerative process, we can formally write its tail probability as

$$
f(t)=P\left\{R_{N(t)+1}>x\right\}=K(t)+(m * K)(t),
$$

where in terms of the distribution functions F, H for inter-renewal times and rewards we can write the the kernel

$$
K(t)=P\left\{R_{N(t)+1}>x, X_{1}>t\right\}=P\left\{R_{1}>x, X_{1}>t\right\} \leqslant \bar{F}(t)
$$

It follows that $f(t) \leqslant \bar{F}(t)+(m * \bar{F})(t)=1$.

Lemma 1.7. iiiiiii HEAD Renewal reward theorem applies to a reward process $R(t)$ that accrues reward continuously over a renewal duration. The total reward in a renewal duration X_{n} remains R_{n} as before, with the sequence $\left(\left(X_{n}, R_{n}\right): n \in \mathbb{N}\right)$ being i.i.d. . ======== Renewal reward theorem applies to a reward process $R(t)$ that accrues positive reward continuously over a renewal duration. The total reward in a renewal duration $X_{n} r e-$ mains R_{n} as before, with the sequence $\left(\left(X_{n}, R_{n}\right): n \in \mathbb{N}\right)$ being iid. i¿i¿¿¿i¿ 7516c998a3884b2c273f6d16145aac03f7af4963
Proof. Let the process $R(t)$ denote the accumulated reward till time t, when the reward accrual is continuous in time. Now, defining $R_{n}=R\left(S_{n}\right)-R\left(S_{n-1}\right)>0$, it follows that

$$
\frac{\sum_{n=1}^{N(t)} R_{n}}{t} \leq \frac{R(t)}{t} \leq \frac{\sum_{n=1}^{N(t)+1} R_{n}}{t}
$$

Result follows from application of strong law of large numbers.

1.1 Limiting empirical average of age and excess times

To determine the average value of the age of a renewal process, consider the following gradual reward process. We assume the reward rate to be equal to the age of the process at any time t, and

$$
R(t)=\int_{0}^{t} A(u) d u
$$

Observe that age is a linear increasing function of time in any renewal duration. In nth renewal duration, it increases from 0 to X_{n}, and the total reward $R_{n}=X_{n}^{2} / 2$. Hence, we obtain from the renewal reward theorem

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} A(u) d u=\frac{\mathbb{E} R_{n}}{\mathbb{E} X_{n}}=\frac{\mathbb{E} X^{2}}{2 \mathbb{E} X}
$$

Example 1.8. Since the accumulated excess time during one renewal cycle is $\int_{0}^{X_{n}}\left(X_{n}-t\right) d t$, the limiting empirical average of excess time $Y(t)=t-S_{N(t)}$ can be found using the renewal reward theorem is

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} Y(u) d u=\frac{\mathbb{E}\left[X^{2}\right]}{2 \mathbb{E}[X]}
$$

Example 1.9. The limiting average of current renewal interval $X_{N(t)}=A(t)+Y(t)=S_{N(t)+1}-S_{N(t)}$ can be computed directly as the sum of two limiting averages, or from the application of renewal reward theorem with accrued reward in one renewal interval being $\int_{0}^{X_{n}} X_{n} d t=X_{n}^{2}$, to get

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X_{N(u)+1} d u=\frac{\mathbb{E}\left[X^{2}\right]}{\mathbb{E}[X]}
$$

We see that this limit is always greater than $\mathbb{E}[X]$, except when X is constant. Such a result was to be expected in view of the inspection paradox, since we can show that $\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{N(t)+1}\right]=$ $\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X_{N(u)+1} d u$.

Example 1.10. It can be shown, under certain regularity conditions, that

$$
\lim _{t \rightarrow \infty} \mathbb{E} R_{N(t)+1}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} R_{N(u)+1} d u=\frac{\mathbb{E}\left[R_{1} X_{1}\right]}{\mathbb{E}\left[X_{1}\right]}
$$

If reward is a monotonically increasing function of renewal interval, then we get that $\lim _{t \rightarrow \infty} \mathbb{E} R_{N(t)+1} \geqslant \mathbb{E} R_{1}$ from Chebyshev's inequality.

1.2 Stationary probability and empirical average

Theorem 1.11. For an alternative renewal process $W=\{W(t) \in\{0,1\}: t \geqslant 0\}$ the stationary probability of being on is same as the limiting average time spent in the on duration if the renewal duration has finite mean. That is,

$$
\lim _{t \rightarrow \infty} P\{W(t)=1\}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} W(u) d u
$$

Proof. Suppose for an alternating renewal process, we earn at a unit rate in on state. The aggregate reward in one renewal duration X_{n} is the on time Z_{n} in that duration.

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} W(u) d u=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E} Z_{n}}{\mathbb{E} X_{n}}=\lim _{t \rightarrow \infty} P(\text { on at time } t) .
$$

1.3 Patterns

Let $X: \Omega \rightarrow\{0,1\}^{\mathbb{N}}$ be a i.i.d. Bernoulli sequence with $\mathbb{E}\left[X_{1}\right]=p$. Let $x=\left(x_{1}, \cdots, x_{m}\right)$ be a pattern and define the first hitting time of the pattern x as $S_{x} \triangleq \inf \left\{n \in \mathbb{N}: X_{n}=x_{m}, X_{n-1}=x_{m-1}, \cdots, X_{n-m+1}=x_{1}\right\}$. So, one can see that $\left(S_{x}^{n}, n \in \mathbb{N}\right)$ is a delayed renewal sequence with i.i.d. inter-arrival times $T_{x}^{k} \triangleq S_{x}^{k}-$ $S_{x}^{k-1}, k \geqslant 2$.

Example 1.12. Let us say that the pattern is (1). So, $P\left(S_{1}=k\right)=(1-p)^{k-1} p$ and $\mathbb{E}\left[S_{1}\right]=1 / p$.
Example 1.13. Let us say that the pattern is $(0,1)$. So,

$$
\begin{aligned}
\mathbb{E}\left[S_{x}\right] & =\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0\right\}}\right]+\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=1\right\}}\right] \\
& =\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0, X_{2}=1\right\}}\right]+\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0, X_{2}=0\right\}}\right]+\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=1\right\}}\right] \\
& =\mathbb{E}\left[\left(1+S_{x}^{\prime}\right) \mathbb{1}_{\left\{X_{1}=1\right\}}\right]+\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0, X_{2}=1\right\}}\right]+\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0, X_{2}=0\right\}}\right] \\
& =p \mathbb{E}\left[S_{x}\right]+p+2 p \bar{p}+\bar{p} \mathbb{E}\left[\left(1+S_{x}\right) \mathbb{1}_{\left\{X_{1}=0\right\}}\right] .
\end{aligned}
$$

See that

$$
\begin{aligned}
\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0\right\}}\right] & =2 p \bar{p}+\bar{p} \mathbb{E}\left[\left(1+S_{x}\right) \mathbb{1}_{\left\{X_{1}=0\right\}}\right] \\
& =2 p \bar{p}+\bar{p}^{2}+\bar{p} \mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0\right\}}\right] \\
\mathbb{E}\left[S_{x} \mathbb{1}_{\left\{X_{1}=0\right\}}\right] & =\frac{2 p \bar{p}+\bar{p}^{2}}{1-\bar{p}} .
\end{aligned}
$$

Hence, $\mathbb{E}\left[S_{x}\right]=1 / p \bar{p}$.

2 Patterns

Let $\left(X_{n} \in\{0,1\}: n \in \mathbb{N}\right)$ be an iid Bernoulli sequence with common mean $\mathbb{E} X_{n}=p$. Then, we are interested in finding the mean time to find first occurrence of a string pattern. We define the first hitting time to a pattern $x=\left(x_{1}, \ldots, x_{p}\right)$ as

$$
S_{x} \triangleq \inf \left\{n \in \mathbb{N}: X_{n}=x_{p}, \ldots, X_{n-p+1}=x_{1}\right\}
$$

Let S_{x}^{k} be the k th time the process X hits patten x, where

$$
S_{x}^{k} \triangleq \inf \left\{n>S_{x}^{k-1}: X_{n}=x_{p}, \ldots, X_{n-p+1}=x_{1}\right\}
$$

It follows that $\left(S_{x}^{k}: k \in \mathbb{N}\right)$ forms a delayed renewal sequence, where $T_{x}(k) \triangleq S_{x}^{k}-S_{x}^{k-1}$ are iid for $k \geqslant 2$.

2.1 Hitting time to pattern (1)

First we consider the simplest example when $x=(1)$. One way to solve this problem is to consider S_{x} as a random variable and find its distribution. For example, when $x=1$ we can write

$$
P\left\{S_{1}=k\right\}=\bar{p}^{k-1} p .
$$

We observe that S_{1} is a geometric random variable of the time to first success, with its mean as the reciprocal of iid failure probability \bar{p}. Second way to solve this is via renewal function approach. We can write

$$
\mathbb{E} S_{1}=\mathbb{E} S_{1} 1_{\left\{X_{1}=0\right\}}+\mathbb{E} S_{1} 1_{\left\{X_{1}=1\right\}}=\bar{p}+p \mathbb{E}\left(1+S_{1}\right)=1+p \mathbb{E} S_{1}
$$

2.2 Hitting time to pattern $(0,1)$

We consider the two length pattern $x=(0,1)$, then $S_{x}=\inf \left\{n \in \mathbb{N}: X_{n}=1, X_{n-1}=0\right\}$. We can again model this hitting time as a random variable, however finding its distribution is slightly more complicated. We next attempt the renewal function approach, to get

$$
\mathbb{E} S_{x}=\mathbb{E} S_{x} 1_{\left\{X_{1}=0\right\}}+\mathbb{E} S_{x} 1_{\left\{X_{1}=1\right\}}=\mathbb{E} S_{x} 1_{\left\{X_{2}=1, X_{0}=0\right\}}+\mathbb{E} S_{x} 1_{\left\{X_{2}=0, X_{1}=0\right\}}+p \mathbb{E}\left(1+S_{x}\right) .
$$

We recognize that the second term on the right hand side can be written as

$$
\mathbb{E} S_{x} 1_{\left\{X_{2}=0, X_{1}=0\right\}}=\bar{p} \mathbb{E}\left(1+S_{x}\right) 1_{\left\{X_{1}=0\right\}}=\bar{p}^{2}+\bar{p} \mathbb{E} S_{x} 1_{\left\{X_{1}=0\right\}}=\bar{p}^{2}+\bar{p} \mathbb{E} S_{x}-\bar{p} p \mathbb{E}\left(1+S_{x}\right)
$$

Combining the above two results, we can write

$$
\mathbb{E} S_{x}=2 p \bar{p}+\bar{p}^{2}+\bar{p} \mathbb{E} S_{x}+p^{2} \mathbb{E}\left(1+S_{x}\right)=1+\left(\bar{p}+p^{2}\right) \mathbb{E} S_{x} .
$$

2.3 Hitting time to pattern x

A general approach is to model $X_{n}^{p}=\left(X_{n}, X_{n-1}, X_{n-p+1}\right)$ as a p-dimensional Markov chain, and find the hitting time to state x of the joint process $X^{p}=\left(X_{n}^{p}: n \in \mathbb{N}\right)$. We observe that successive times to hit a pattern x is a delayed renewal process in general. If the time to hit pattern x is same as time duration between two successive hits to pattern x, these instants form a renewal process. From the renewal reward process, we can write the mean inter-renewal duration as the number of hits to pattern x, as

$$
\mathbb{E}\left(S_{x}^{k}-S_{x}^{k-1}\right)=\lim _{n \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} 1_{\left\{X_{n}^{p}=x\right\}}=\lim _{n \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} 1_{\left\{X_{n}=x_{p}, \ldots, X_{n-p+1}=x_{1}\right\}}=P\left\{X_{n}=x_{p}, \ldots, X_{n-p+1}=x_{1}\right\} .
$$

Mean hitting time to pattern x is equal to mean hitting time to a sub-pattern, and then hitting time from the sub-pattern to the pattern x. That is, in general we can write

$$
\mathbb{E} T_{x}=\mathbb{E} T_{x}
$$

A Chebyshev's sum inequality

Theorem A.1. Consider two non-decreasing positive measurable functions $f, g: \mathbb{R} \rightarrow \mathbb{R}_{+}$and a random variable $X: \Omega \rightarrow \mathbb{R}$. Then, $\mathbb{E} f(X) g(X) \geqslant \mathbb{E} f(X) \mathbb{E} g(X)$.

Proof. Consider a random sequence $Y: \Omega \rightarrow \mathbb{R}^{2}$ to be i.i.d. replicas of $X: \Omega \rightarrow \mathbb{R}$ and the product $\left(f\left(Y_{1}\right)-f\left(Y_{2}\right)\right)\left(g\left(Y_{1}\right)-g\left(Y_{2}\right)\right)$. For non-decreasing functions f, g, we have

$$
\left(f\left(Y_{1}\right)-f\left(Y_{2}\right)\right)\left(g\left(Y_{1}\right)-g\left(Y_{2}\right)\right)=\left(f\left(Y_{1}\right)-f\left(Y_{2}\right)\right)\left(g\left(Y_{1}\right)-g\left(Y_{2}\right)\right) \mathbb{1}_{\left\{Y_{1} \geqslant Y_{2}\right\}}+\left(f\left(Y_{1}\right)-f\left(Y_{2}\right)\right)\left(g\left(Y_{1}\right)-g\left(Y_{2}\right)\right) \mathbb{1}_{\left\{Y_{1}<Y_{2}\right\}} .
$$

Defining $m_{f} \triangleq \mathbb{E} f(X)$ and $m_{g} \triangleq \mathbb{E} g(X)$, we observe that since f, g are increasing, so are $f-m_{f}$ and $g-m_{g}$. Let $x_{f} \triangleq \inf \left\{x \in \mathbb{R}: f(x)-m_{f} \geqslant 0\right\}$ and $x_{g} \triangleq \inf \left\{x \in \mathbb{R}: g(x)-m_{g} \geqslant 0\right\}$. Then, for $x<x_{f} \wedge x_{g}$ and $x>x_{f} \vee x_{g}$ we have $\left(f-m_{f}\right)\left(g-m_{g}\right) \geqslant 0$ and

