
Lecture-17: Continuous Time Markov Chains

1 Markov Process

Definition 1.1. For any stochastic process X : Ω → XR+ indexed by positive reals and taking values
in X ⊆ R, the history of the process until time t ∈ R+ is the collection of all the events that can be
determined by the realization of the process X until time t, denoted by Ft ≜ σ (Xu, u ⩽ t) .

Definition 1.2. A real-valued stochastic process X : Ω → XR+ indexed by positive reals, and with state
space X, is a Markov process if it satisfies the Markov property. That is for any Borel measurable set
A ∈ B(X), the distribution of the future states conditioned on the present, is independent of the past,
and

P({Xt+s ∈ A} |Fs) = P({Xt+s ∈ A} |σ(Xs)), for all s, t ∈ R+.

Definition 1.3. A Markov process X : Ω → XR+ with countable state space X is called continuous time
Markov chain (CTMC).

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times 0 < t1 <
· · · < tm < t and states x1, . . . , xm,y ∈ X, we have

P({Xt = y}
∣∣ ∩m

k=1
{

Xtk = xk
}
) = P({Xt = y}

∣∣ {Xtm = xm}).

Example 1.4 (Counting process). Any simple counting process N : Ω → Z
R+
+ with independent in-

crements is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC.
Countability of the state space is clear from the definition of the counting process. For Markov
property, we observe that for t > s, the increment Nt − Ns is independent of Fs. Hence for the
natural filtration F•,

E[1{Nt=j} | Fs] = ∑
i∈Z+

E[1{Nt=j,Ns=i} | Fs] = ∑
i∈Z+

1{Ns=i}E1{Nt−Ns=j−i} = E[1{Nt=j} | σ(Ns)].

1.1 Transition probability kernel

Definition 1.5. We define the transition probability from state x at time s to state y at time t + s as

Pxy(s, s + t)≜ P({Xs+t = y}
∣∣ {Xs = x}).

Definition 1.6. The Markov process has homogeneous transitions for all states x,y ∈ X and all times
s, t ∈ R+, if

Pxy(t)≜ Pxy(0, t) = Pxy(s, s + t).

We denote the transition probability kernel/function at time t by P(t)≜ (Pxy(t) : x,y ∈ X).

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump
transition probabilities. We will assume that the sample path of the process X is right continuous with
left limits at each time t ∈ R+.

Remark 3. Conditioned on the initial state of the process is x, we denote the conditional probability for
any event A ∈ F as Px(A) ≜ P(A | {X0 = x}) and the conditional expectation for any random variable
Y : Ω → R as ExY ≜ E[Y | {X0 = x}].

Lemma 1.7 (stochasticity). Transition kernel P : R+ → [0,1]X×X at each time t ∈ R+ is a stochastic matrix.
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Proof. From the countable partition of the state space X, we can write 1 = Px({Xt ∈ X}) = ∑y∈X Pxy(t)
for any state x ∈ X.

Lemma 1.8 (semigroup). Transition kernel satisfies the semigroup property, i.e. P(s + t) = P(s)P(t) for all
s, t ∈ R+.

Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write
the (x,y)th entry of kernel matrix P(s + t) as

Pxy(s + t) = Pxy(0, s + t) = ∑
z∈X

Pxz(0, s)Pzy(s, s + t) = ∑
z∈X

Pxz(0, s)Pzy(0, t) = [P(s)P(t)]xy.

Result follows since states x,y ∈ X were chosen arbitrarily.

Lemma 1.9 (continuity). Transition kernel P : R+ → [0,1]X×X for a homogeneous CTMC X : Ω → XR+ is
a continuous function of time t ∈ R+, such that limt↓0 P(t) = I, the identity matrix. That is, Pxx(0) = 1 and
Pxy(0) = 0 for all y ̸= x ∈ X.

Proof. We will first show the continuity of transition kernel at time t = 0. From right continuity of
sample paths for process X, we have limt↓0 Xt = X0 and from continuity of probability functions we get
limt↓0 Px {Xt = y} = Px(limt↓0 Xt = y) = Ixy.

For continuity at any time t > 0, we can write the difference P(t + h)− P(t) = P(t)(P(h)− I) using
the semigroup property of the transition kernel. The continuity of transition kernel at time t = 0, and
boundedness of P(t) implies continuity of P(t) at all times t > 0.

Remark 4. Since each entry of transition kernel P(t) is a probability, semigroup property leads to char-
acterization of the kernel P(t) completely.

Proposition 1.10. For a time-homogeneous CTMC X : Ω → XR+ with transition kernel P, for all times 0 <
t1 < · · · < tm and states x0, x1, . . . , xm ∈ X, we have

P(∩m
k=1

{
Xtk = xk

}
| {X0 = x0}) = Px0x1(t1)Px1x2(t2 − t1) . . . Pxm−1xm(tm − tm−1).

Corollary 1.11. All finite dimensional distributions of the CTMC X : Ω → XR+ is governed by the initial
distribution.

Proof. Let ν0 ∈M(X) be the initial distribution of the CTMC X, such that ν0(x0) = P{X0 = x0} for each
x0 ∈ X. For all finite index sets F ⊂ R+, |F| = m and state vector x ∈ Xm, we have

P(∩tj∈F

{
Xtj = xj

}
) = ∑

x0∈X
ν0(x0)Px0x1(t1) . . . Pxm−1xm(tm − tm−1).

Definition 1.12 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity, we
can define

eA ≜ I + ∑
n∈N

An

n!
.

Lemma 1.13. For a homogeneous CTMC, we can write the transition kernel P(t) = etQ in terms of a constant
matrix eQ ≜ P(1).

Proof. This follows from the semigroup property and the continuity of transition kernel P(t). In partic-
ular, we notice that P(n) = P(1)n and P( 1

m ) = P(1)
1
m for all m,n ∈ N. Since, any rational number q ∈ Q

can be expressed as a ratio of integers with no common divisor, we get

P(q) = P(1)q, q ∈ Q.

Since the rationals are dense in reals and P is continuous function, it follows that P(t) = P(1)t for all
t ∈ R and the result follows from definition of eQ = P(1).
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1.2 Excess time in a state

Definition 1.14. From the definition of excess time as the time until next transition, we can write the
excess time at time t ∈ R+ for the CTMC X as

Yt ≜ inf{s > 0 : Xt+s ̸= Xt} .

Remark 5. We observe that Yt is the excess remaining time the process spends in state Xt at instant t.
That is, Xt+Yt ̸= Xt.

Remark 6. For a homogeneous CTMC X, the distribution of excess time Yt conditioned on the current
state Xt, doesn’t depend on time t. Hence, we can define the following conditional complementary
distribution of excess time as F̄x(u)≜ P({Yt > u} |{Xt = x}) = Px {Y0 > u} .

Lemma 1.15. For a homogeneous CTMC X, there exists a positive sequence ν ∈ RX
+ , such that

F̄x(u)≜ P({Yt > u} |{Xt = x}) = e−uνx , x ∈ X.

Proof. We fix a state x ∈ X, and observe that the function F̄x ∈ [0,1] is non-negative, non-increasing,
and right-continuous in u. Using the Markov property and the time-homogeneity, we can show that F̄x
satisfies the semigroup property. In particular,

F̄x(u + v) = P({Yt > u + v} |{Xt = x}) = P({Yt > u,Yt+u > v} |{Xt = x}) = F̄x(u)F̄x(v).

The only continuous function F̄x ∈ [0,1] that satisfies semigroup property is an exponential function
with a negative exponent.

Definition 1.16. For a CTMC X, a state x ∈ X is called

(i) absorbing if νx = 0,

(ii) stable if νx ∈ (0,∞), and

(iii) instantaneous if νx = ∞.

Remark 7. The sojourn time in an absorbing state is ∞, zero in an instantaneous state, and almost surely
finite and non-zero in a stable state.

Definition 1.17. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC. A
pure jump CTMC with

(i) all stable states and infx∈X νx ⩾ ν > 0 is called stable, and

(ii) supx∈X νx ⩽ ν < ∞ is called regular.

Remark 8. Pure jump homogeneous CTMC with finite stable states are stable and regular. We will focus
on pure jump homogeneous CTMC over countably infinite states, that are stable and regular.

Example 1.18 (Poisson process). Consider the counting process N : Ω → Z
R+
+ for a Poisson point

process with homogeneous rate λ. Using the stationary independent increment property, we have
for all u ⩾ 0

F̄i(u) = P({Yt > u} | {Nt = i}) = P({Nt+u = i} |{Nt = i}) = P{Nt+u − Nt = 0}= P{Yt > u}= e−λu.

A Poisson process with finite non-zero rate is a pure-jump CTMC with stable states.
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1.3 Strong Markov property

Consider a probability space (Ω,F, P) and a continuous filtration F• = (Ft ⊆ F : t ∈ R+) defined on this
space.

Definition 1.19. A random variable τ : Ω → R+ ∪ {∞} is a stopping time with respect to F• if {τ ⩽ t} ∈
Ft for each t ∈R+. That is, a random variable τ is a stopping time if the event {τ ⩽ t} can be determined
completely by the history Ft. An almost surely finite stopping time τ is called proper.

Definition 1.20. A stochastic process X : Ω →XR+ adapted to filtration F• has strong Markov property
if for any proper stopping time τ with respect to F•, and set A ∈ B(X), we have

P({Xτ+s ∈ A}
∣∣ Fτ) = P({Xτ+s ∈ A}

∣∣ σ(Xτ)).

Lemma 1.21. A continuous time Markov chain X : Ω → XR+ has the strong Markov property.

Proof. It follows from the right continuity of the CTMC process X, and the fact that the map t 7→
E[ f (Xs+t)

∣∣ σ(Xt)] is right-continuous for any bounded continuous function f : X → R. To see the
right continuity of the map, we observe that

E[ f (Xs+t)
∣∣ σ(Xt)] = ∑

x∈X
1{Xt=x} ∑

y∈X
Pxy(s) f (y).

Right-continuity of the map follows from the right continuity of the sample paths of process X, right-
continuity and boundedness of the kernel function, and boundedness and continuity of f , and bounded
convergence theorem.

Corollary 1.22. A pure jump CTMC X satisfies the following strong Markov property. For any proper stopping
time τ, finite m ∈ N, finite times 0 < t1 < · · · < tm, any event H ∈ Fτ and states x0, x1, . . . , xm ∈ X, we have

P(∩m
k=1

{
Xtk+τ = xk

}
| H ∩ {Xτ = x0}) = Px0(∩m

k=1
{

Xtk = xk
}
).

Remark 9. In particular for a pure-jump time-homogeneous CTMC X, proper stopping time τ, and event
H ∈ Fτ , we have

P({Xτ+s = y} |{Xτ = x} ∩ H) = Pxy(s).
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