
Lecture-18: Embedded Markov Chain and Holding Times

1 State Evolution

For a homogeneous Markov process X : Ω → XR
+ on countable state space X⊆ R that has right continu-

ous sample paths with left limits (rcll), we wish to characterize the transition kernel P : R+ → [0,1]X×X.
In particular, we wish to know following probabilities

Pxy(0, t) = P({Xs+t = y}
∣∣ {Xs = x}), t ⩾ 0.

To this end, we define the sojourn time in any state, the jump times, and the jump transition probabili-
ties.

1.1 Jump and sojourn times

Definition 1.1. We denote the natural filtration for the stochastic process X by F• = (Ft : t ∈ R+) where
the history until any time t ∈ R+ is Ft = σ(Xu,u ⩽ t).

Definition 1.2. The jump times of a right continuous stochastic process X : Ω → XR+ are defined as

S0 ≜ 0, Sn ≜ inf
{

t > Sn−1 : Xt ̸= XSn−1

}
.

Lemma 1.3. Jump times S : Ω → RN
+ are stopping times adapted to the natural filtration of the process X.

Proof. It is clear that the event {Sn ⩽ t} is completely determined by the history Ft until time t.

Definition 1.4. We denote the state of the process at nth stopping time Sn as Zn ≜ XSn . The sojourn
time of this process staying in state Zn−1 is Tn ≜ Sn − Sn−1.

Definition 1.5. Let N : Ω → Z
R+
+ be the counting process associated with jump times sequence S : Ω →

RN
+ . That is, the number of jumps in (0, t] is denoted by

Nt ≜ ∑
n∈N

1{Sn⩽t}.

Remark 1. From the definition of jump instants, it follows that the history until time t is

Ft ⊆ σ((Z0,S0), (Z1, T1), . . . , (ZNt , TNt), TNt+1).

We can verify that FSn = σ((Zi, Ti), 0 ⩽ i ⩽ n).

Lemma 1.6. For a homogeneous CTMC, each sojourn time Tn : Ω → R+ is a continuous memoryless random
variable, and the sequence of sojourn times (Tj : j ⩾ n) is independent of the past FSn−1 conditioned on Zn−1.

Proof. We observe that the sojourn time Tn equals the excess time YSn−1 in state Zn−1 starting at time
Sn−1. Using the strong Markov property, we can write the conditional complementary distribution of
Tn given any historical event H ∈ FSn−1 and y ⩾ 0 as

P({Tn > u} |{Zn−1 = x} ∩ H) = P(
{

YSn−1 > u
}
|
{

XSn−1 = x
}
∩ H) = exp(−uνx) = F̄x(u).

Corollary 1.7. If Xn = x, then the random variable Tn+1 has an exponential random distribution with rate νx.

Remark 2. Inverse of mean sojourn time in state x is called the transition rate out of state x denote by
νx = (ExT1)

−1. Recall that a state x is instantaneous if νx = ∞, stable if 0 < νx < ∞, and absorbing if
νx = 0.
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Definition 1.8. A pure jump CTMC with

(i) all stable states and infx∈X νx ⩾ ν > 0 is called stable, and

(ii) supx∈X νx ⩽ ν < ∞ is called regular.

Proposition 1.9. For a stable CTMC, the jump times are almost surely finite stopping times.

Proof. We observe that the jump times are sum of independent exponential random variables. Further
by coupling, we can have a sequence of i.i.d. random variables T : Ω → RN

+ , such that Tn ⩽ Tn almost
surely and ETn = 1

ν for each n ∈ N. Hence, we have

Sn =
n

∑
i=1

Ti ⩽
n

∑
i=1

Ti ≜ Sn.

Since Sn is the nth arrival instant of a Poisson process with finite rate ν, it follows that Sn and hence Sn
is finite almost surely.

Make the following theorem iff

Proposition 1.10. For a regular CTMC, P{Nt < ∞} = 1 for all finite times t ∈ R+.

Proof. We observe that the jump times are sum of independent exponential random variables. Further
by coupling, we can have a sequence of i.i.d. random variables T : Ω → RN

+ , such that Tn ⩾ Tn almost
surely and ETn = 1

ν for each n ∈ N. Hence, we have for each n ∈ N,

Sn =
n

∑
i=1

Ti ⩾
n

∑
i=1

Ti ≜ Sn.

Let m(t) be the associated renewal function with the sequence T, then

m(t) = ∑
n∈N

P{Sn ⩽ t}⩽ ∑
n∈N

P{Sn ⩽ t} = m(t).

Since the inter-renewal times have finite means, it follows that m(t) and hence m(t) is finite. This
implies that positive random variable Nt has finite mean, and hence is finite almost surely for any finite
t ∈ R+.

1.2 Jump process

Definition 1.11. The jump process is a discrete time process Z : Ω → XN derived from the continuous
time stochastic process X : Ω → XR+ by sampling at jump times. This is also sometimes referred to as
the embedded DTMC of the pure jump CTMC X.

Definition 1.12. The corresponding jump transition probabilities are defined

pxy ≜ Pxy(Sn−1,Sn) = P({XSn = y}
∣∣ {XSn−1 = x

}
), x,y ∈ X.

Remark 3. From the strong Markov property and the time-homogeneity of the CTMC X, we see that
Pxy(Sn−1,Sn) = Pxy(0, T1).

Lemma 1.13. For any right continuous with left limits stochastic process X, the sum of jump transition proba-
bilities ∑y ̸=x Pxy(Sn−1,Sn) = 1 for all XSn−1 = x ∈ X.

Proof. It follows from law of total probability.

Lemma 1.14. For a homogeneous CTMC, the jump probability from state XSn−1 to state XSn depends solely on
XSn−1 and is independent of jump instants.

Proof. We can write the joint probability of state Zn = y and Tn > u for any y ∈X,u ∈ R+ conditioned on
the state Zn−1 = x and any historical event H ∈FSn−1 for any states x,y ∈X, using the definition of excess
time Yt = SNt+1 − t, the strong Markov property, the time-homogeneity of CTMC X, and memoryless
property of excess time Y, as

P({Tn > u, Zn = y} |{Zn−1 = x}∩ H) = P({Xu+Yu = y} |{Xu = x})P({Y0 > u} |{X0 = x}) = Pxy(T1)F̄x(u).

We define pxy ≜ Pxy(T1), and hence the result follows and we can write

P({Tn > u, Zn = y} |{Zn−1 = x}) = P({Tn > u} |{Zn−1 = x})P({Zn = y} |{Zn−1 = x}) = pxye−uνx .

This implies that sojourn times and jump instant probabilities are independent.

2



Maybe these can be merged with previous theorems

Corollary 1.15. The matrix P = (pxy : x,y ∈ X) is stochastic, and if νx > 0 then pxx = 0.

Proof. Recall pxy = Pxy(S1). If νx > 0, then limu→∞ P({Y0 > u} |{X0 = x}) = 0, and hence S1 is finite
almost surely. By definition XS1 ̸= X0 = x, and hence pxx = 0.

Remark 4. If νx = 0, then for any u ⩾ 0, we have P({Y0 > u} |{X0 = x}) = 1, and hence S1 = ∞ almost
surely whenever X(0) = x. By convention, we set pxx = 1 and pxy = 0 for all states y ̸= x.

Theorem 1.16. For a pure jump CTMC X : Ω → XR+ on state space X, if Sn is a proper stopping time for some
n ∈ N. Then for all states x,y ∈ X and duration u ⩾ 0, we have

P({Tn+1 > u, Zn+1 = y} |{X0 = x0, . . . , Zn = x,S0 ⩽ s0, . . . ,Sn ⩽ sn}) = pxye−uνx .

Proof. Since the history of the process until stopping time Sn is given by FSn = σ((Zi, Ti) : 0 ⩽ i ⩽ n),
and H ∩ {Zn = x} = {Z0 = x0, . . . , Zn = x,S0 ⩽ s0, . . . ,Sn ⩽ sn} ∈ FSn . Using strong Markov property
and time-homogeneity of the CTMC X, we have

P({Tn+1 > u, Zn+1 = y} |H ∩ {Zn = x}) = Px {S1 > u, Z1 = x} .

The result follows from the previous Lemma 1.14.

Corollary 1.17. For a time-homogeneous CTMC, the transition probabilities (pxy : x,y ∈ X) and sojourn times
T : Ω → RN

+ are independent.

Corollary 1.18. The jump process is a homogeneous Markov chain with countable state space X.

Example 1.19 (Poisson process). For a Poisson counting process N : Ω → Z
R+
+ with time-

homogeneous rate λ, the countable state space is Z+, and transition rate νi = λ for each i ∈ Z+.
It follows from the memoryless property of exponential random variables, that

P({Yu > t} |{Nu = i}) = P{S1 > t} = e−λt.

Further, the embedded Markov chain or the jump process is given by the initial state N0 = 0 and
the transition probability matrix P = (pij : i, j ∈ Z+) where pi,i+1 = 1 and pij = 0 for j ̸= i + 1. This
follows from the definition of T1, since pij = P(

{
NT1 = j

}
| {N0 = i}) = 1{j=i+1}.

Theorem 1.20. A pure-jump homogeneous CTMC whose embedded DTMC is recurrent is regular.

Proof. From the recurrence of embedded chain, there exists a state x ∈ X with holding rate νx > 0. Let
Nx(n) = ∑n

i=11{Zi=x} be the number of visits to state x in first n transitions and Tx
i be the ith sojourn

time in state x. From the recurrence of the embedded chain, this state x occurs infinitely often, i.e.
limn∈N Nx(n) = ∞ almost surely. For each state x ∈ X, the sojourn time sequence Tx : Ω → RN

+ is i.i.d.

and exponentially distributed with mean ETx
i = 1

νx
< ∞. Since Sn ⩾ ∑

Nx(n)
i=1 Tx

i , we get that

m(t) = ∑
n∈N

P{Sn ⩽ t}⩽ ∑
n∈N

P

{
Nx(n)

∑
i=1

Tx
i ⩽ t

}
= νxt.

It follows that Nt is almost surely finite for any finite time t ∈ R+.

1.3 Alternative construction of CTMC

Definition 1.21. Let Z : Ω → XN be a discrete time Markov chain with a countable state space X ⊆ R,
and the transition probability matrix P : X×X→ [0,1] a stochastic matrix. Further, we let ν : X→ R+ be
the set of transition rates such that pxx = 0 if νx > 0 . For any initial state Z0 ∈ X, defining we can define
a right continuous with left limits piece-wise constant stochastic process X : Ω → XR+ inductively as

Xt ≜ Zn−1, t ∈ [Sn−1,Sn),

where S0 = 0 and nth transition instant Sn ≜ ∑n
i=1 Ti, where Tn is a random variable independent of

(Z0, T0), . . . , (Zn−2, Tn−2), Tn−1 and distributed exponentially with rate νx if Zn−1 = x. We define the
the number of transitions until time t by Nt = ∑n∈N1{Sn⩽t}.
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Remark 5. From the definition, any sample path of the process is right-continuous with left limits, and
has countable state space X.

Remark 6. We observe that the history of the process until time t is given by σ((Z0, T1), . . . , (ZNt , TNt+1)).

Remark 7. A necessary condition for the process X to be defined on index set R+, is that for each t ∈ R+,
there exists an n such that Sn ⩽ t < Sn+1. That is, P{Nt < ∞} = P{S∞ > t} = 1 for all t ∈ R+. This is
equivalent to P{S∞ = ∞} = 1, or P{S∞ < ∞} = 0. Let ω ∈ {S∞ < ∞}, then we can’t define the process
for t > S∞.

Remark 8. We will show that X is a CTMC. Recall that, a regular CTMC X : Ω →XR+ has P{Nt < ∞}= 1
for all t ∈ R+.

Example 1.22 (Non-regular CTMC). For the countable state space X, consider the probability tran-
sition matrix P such that pi,i+1 = 1 and the exponential holding times with rate νi = i2 for each state
i ∈ N. Clearly, supi∈N νi = ∞, and hence it is not regular.

Lemma 1.23. Conditioned on the process state at the beginning of an interval, the increments of the counting
process N : Ω → Z

R+
+ is independent of the past, and depends only on the duration of the increment. That is, for

a historical event H ∈ Fs and state x ∈ X,

P({Nt − Ns = k}
∣∣ {Xs = x} ∩ H) = P({Nt−s = k}

∣∣ {X0 = x}).

Proof. From the independence of inter-transition times, we know that TNs+j is independent of history
Fs for j ⩾ 2 conditioned on the process state Xs = x. Further, from the memoryless property of an
exponential random variable, the excess time Ys is independent of the age As = s − SNs , and is identi-
cally distributed to TNs+1. Therefore, the the conditional distribution of (Ys, TNs+2, . . . , TNs+k) given the
current process state Xs = x, is identical to that of the conditional distribution of inter-transition times
(T1, T2, . . . , Tk) given initial state X0 = x. Hence for any historical event H ∈ Fs and state x ∈ X, we can
write the conditional probability of increment Nt − Ns for t > s, as

P({Nt − Ns = k}
∣∣ {Xs = x}∩ H) = P(

{
Ys +

Ns+k

∑
i=Ns+2

Ti ⩽ t − s < Ys +
Ns+k+1

∑
i=Ns+2

Ti

} ∣∣ {Xs = x}∩ H) = Px {Nt−s = k} .

Proposition 1.24. The stochastic process X : Ω → XR+ constructed in Definition 1.21 is a time-homogeneous
CTMC.

Proof. For states x,y ∈ X, we can write the probability of process being in state y, conditioned on any
historical events H ∈ Fs as

P({Xt = y}
∣∣ {Xs = x} ∩ H) = ∑

k∈Z+

P({Xt = y, Nt − Ns = k}
∣∣ {Xs = x} ∩ H).

From the construction of process X in Definition 1.21, conditional independence of counting process
and time homogeneity from Lemma 1.23, and definition of conditional probability, we can write for
each k ∈ N,

P({Xt = y, Nt − Ns = k}
∣∣ {Xs = x} ∩ H) = P(

(
∩i∈[k−1] {Zi ∈ X\{Zi−1}}

)
∩ {Zk = y}

∣∣ {Z0 = x})Px {Nt−s = k}

= Px {Xt−s = y, Nt−s = k} .

Thus, we have shown the time homogeneity and Markov property for the process X.

Theorem 1.25. A stochastic process X : Ω → XR+ defined on countable state space X ⊆ R and having right
continuous sample paths with left limits, is a CTMC iff

i sojourn times are independent and exponentially distributed with rate νx where XSn−1 = x, and

ii jump transition probabilities pxy = Pxy(Sn−1,Sn) are independent of jump times Sn, such that ∑y ̸=x pxy =
1.
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