Lecture-22: Reversed Processes

1 Reversed Processes

Definition 1.1. Let $X : \Omega \to \mathfrak{X}^T$ be a stochastic process with index set *T* being an additive ordered group such as \mathbb{R} or \mathbb{Z} . Then, $\hat{X}^{\tau} : \Omega \to \mathfrak{X}^T$ defined as $\hat{X}^{\tau}(t) \triangleq X(\tau - t)$ for all $t \in T$ is the **reversed process** for some $\tau \in T$.

Remark 1. Note that a reversed process, doesn't have to have the identical distribution to the original process. For a reversible process *X*, the reversed process would have identical distribution.

Lemma 1.2. If $X : \Omega \to X^T$ is a Markov process, then the reversed process \hat{X}^{τ} is also Markov for any $\tau \in T$.

Proof. Let $\mathcal{F}_t = \sigma(X(s) : s \leq t)$ denote the history of the process until time *t*. From the Markov property of process *X*, we have for any event $B \in \mathcal{F}_{t+u}$, states $x, y \in \mathcal{X}$ and times u, s > 0

$$P(B|\{X_t = y, X_{t-s} = x\}) = P(B|\{X_t = y\}).$$

Markov property of the reversed process follows from the observation, that

$$P(\{X_{t-s} = x\} | \{X_t = y\} \cap B) = \frac{P\{X_{t-s} = x, X_t = y\} P(B | \{X_{t-s} = x, X_t = y\})}{P\{X_t = y\} P(B | \{X_t = y\})} = P(\{X_{t-s} = x\} | \{X_t = y\}).$$

Remark 2. Even if the forward process *X* is time-homogeneous, the reversed process need not be time-homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov but not necessarily time-homogeneous.

Theorem 1.3. If $X : \Omega \to X^{\mathbb{R}}$ is an irreducible, positive recurrent, stationary, and homogeneous Markov process with transition kernel $P : \mathbb{R} \to [0,1]^{X \times X}$ and equilibrium distribution π , then the reversed Markov process $\hat{X}^{\tau} : \Omega \to X^{\mathbb{R}}$ is also irreducible, positive recurrent, stationary, and homogeneous with the same equilibrium distribution π and transition kernel $\hat{P} : \mathbb{R} \to [0,1]^{X \times X}$ defined for all $t \in T$ and states $x, y \in X$, as

$$\hat{P}_{xy}(t) \triangleq \frac{\pi_y}{\pi_x} P_{yx}(t).$$

Further, for any finite sequence $x \in X^n$ *, we have*

$$P_{\pi} \cap_{i=1}^{n} \{ X_{t_i} = x_i \} = \hat{P}_{\pi} \cap_{i=1}^{n} \{ \hat{X}_{t_i} = x_{n-i+1} \}.$$

Proof. We can check that \hat{P} is a probability transition kernel, since $\hat{P}_{xy} \ge 0$ for all $t \in T$ and

$$\sum_{y \in \mathcal{X}} \hat{P}_{xy}(t) = \frac{1}{\pi_x} \sum_{y \in \mathcal{X}} \pi_y P_{yx}(t) = 1$$

Further, we see that π is an invariant distribution for \hat{P} , since for all states $x, y \in \mathfrak{X}$

$$\sum_{x\in\mathcal{X}}\pi_x\hat{P}_{xy}(t)=\pi_y\sum_{x\in\mathcal{X}}P_{yx}(t)=\pi_y.$$

We next wish to show that \hat{P} defined in the Theorem, is the probability transition kernel for the reversed process. Since the forward process is stationary and time-homogeneous, we can write the probability transition kernel for the reversed process as

$$P(\{\hat{X}_{\tau-t+s}^{\tau}=x\} \mid \{\hat{X}_{\tau-t}^{\tau}=y\}) = \frac{P\{\hat{X}_{\tau-t+s}^{\tau}=x, \hat{X}_{\tau-t}^{\tau}=y\}}{P\{\hat{X}_{\tau-t}^{\tau}=y\}} = \frac{P_{\pi}\{X_{t-s}=x, X_{t}=y\}}{P_{\pi}\{X_{t}=y\}} = \frac{\pi_{x}P_{xy}(0,s)}{\pi_{y}}$$

This implies that the reversed process is time-homogeneous and has the desired probability transition kernel. Further, π is the stationary distribution for the reversed process and is the marginal distribution for the reversed process at any time *t*, and hence the reversed process is also stationary.

For an irreducible and positive recurrent Markov process with stationary distribution π , we have $\pi_x > 0$ for each state $x \in \mathcal{X}$. Since the forward process is irreducible, there exists a time $t \ge 0$ such that $P_{yx}(t) > 0$ for states $x, y \in \mathcal{X}$, and hence $\hat{P}_{xy}(t) > 0$ implying irreducibility of the reversed process. From the Markov property of the underlying processes and definition of \hat{P} , we can write

$$P_{\pi}\{X_{t_1}=x_1,\ldots,X_{t_n}=x_n\}=\pi_{x_1}\prod_{i=1}^{n-1}P_{x_ix_{i+1}}(t_{i+1}-t_i)=\pi_{x_n}\prod_{i=1}^{n-1}\hat{P}_{x_{i+1}x_i}(t_{i+1}-t_i)=\hat{P}_{\pi}\{\hat{X}_{t_1}=x_n,\ldots,\hat{X}_{t_n}=x_1\}.$$

This follows from the fact that $\pi_{x_1}P_{x_1x_2}(t_2 - t_1) = \pi_{x_2}\hat{P}_{x_2x_1}(t_2 - t_1)$, and hence we have

$$\pi_{x_1} \prod_{i=1}^{n-1} P_{x_i x_{i+1}}(t_{i+1} - t_i) = \pi_{x_n} \prod_{i=1}^{n-1} \hat{P}_{x_{i+1} x_i}(t_{i+1} - t_i).$$

Let's take $\tau = t_n + t_1$, then we have $\hat{X}_t^{\tau} = X(t_n + t_1 - t)$ and hence we have $(X_{t_1}, \dots, X_{t_i}, \dots, X_{t_n}) = (\hat{X}_{t_n}^{\tau}, \dots, \hat{X}^{\tau}(t_1 + t_n - t_i), \dots, \hat{X}_{t_1}^{\tau})$. From the Markovity of the reversed process, we can write

$$\hat{P}_{\pi}\left\{\hat{X}_{t_{n}}^{\tau}=x_{1},\ldots,\hat{X}_{t_{1}}^{\tau}=x_{n}\right\}=\hat{P}_{\pi}\left\{\hat{X}_{t_{1}}^{\tau}=x_{n},\ldots,\hat{X}_{t_{n}}^{\tau}=x_{1}\right\}=\pi_{x_{n}}\prod_{i=1}^{n-1}\hat{P}(\hat{X}_{\tau-t_{n-i}}^{\tau}=x_{n-i}|\hat{X}_{\tau-t_{n-i+1}}^{\tau}=x_{n-i+1})$$
$$=\pi_{x_{n}}\prod_{i=1}^{n-1}\hat{P}_{x_{n-i+1}x_{n-i}}(t_{n-i+1}-t_{n-i})=\pi_{x_{n}}\prod_{i=1}^{n-1}\hat{P}_{x_{i+1}x_{i}}(t_{i+1}-t_{i}).$$

For any finite $n \in \mathbb{N}$, we see that the joint distributions of $(X_{t_1}, \ldots, X_{t_n})$ and $(X_{s+t_1}, \ldots, X_{s+t_n})$ are identical for all $s \in T$, from the stationarity of the process X. It follows that \hat{X} is also stationary, since $(\hat{X}_{t_n}, \ldots, \hat{X}_{t_1})$ and $(\hat{X}_{s+t_n}, \ldots, \hat{X}_{s+t_1})$ have the identical distribution.

Corollary 1.4. If $X : \Omega \to X^{\mathbb{Z}}$ is an irreducible, stationary, homogeneous Markov chain with transition matrix P and equilibrium distribution π , then the reversed chain $\hat{X}^{\tau} : \Omega \to X^{\mathbb{Z}}$ is an irreducible stationary, time homogeneous Markov chain with the same equilibrium distribution π , and transition matrix \hat{P} defined as $\hat{P}_{xy} = \frac{\pi_y}{\pi_x} P_{yx}$, for all $x, y \in \mathcal{X}$.

Corollary 1.5. If $X : \Omega \to X^{\mathbb{R}}$ is an irreducible, stationary, homogeneous Markov process with generator matrix Q and equilibrium distribution π , then the reversed process $\hat{X}^{\tau} : \Omega \to X^{\mathbb{R}}$ is also an irreducible, stationary, homogeneous Markov process with same equilibrium distribution π and generator matrix \hat{Q} defined as $\hat{Q}_{xy} = \frac{\pi_y}{\pi_x} Q_{yx}$, for all $x, y \in X$.

Corollary 1.6. Consider irreducible Markov chain with transition matrix $P : \mathfrak{X} \times \mathfrak{X} \to [0,1]$. If one can find a nonnegative vector $\alpha \in [0,1]^{\mathfrak{X}}$ and other transition matrix $P^* : \mathfrak{X} \times \mathfrak{X} \to [0,1]$ such that $\sum_{x \in \mathfrak{X}} \alpha_x = 1$ and satisfies the detailed balance equation

$$\alpha_x P_{xy} = \alpha_y P_{yx}^*,$$

then α is the stationary probability vector of P and P^{*} is the transition matrix for the reversed chain.

Proof. Summing both sides of the detailed balance equation $\alpha_x P_{xy} = \alpha_y P_{yx}^*$ over x, we obtain $\sum_{x \in \mathcal{X}} \alpha_x P_{xy} = \alpha_y$. It follows that $\alpha \in [0,1]^{\mathcal{X}}$ is the stationary distribution of the forward process. Since $P_{yx}^* = \frac{\alpha_x P_{xy}}{\alpha_y}$, it follows that $P^* : \mathcal{X} \times \mathcal{X} \to [0,1]$ is the transition matrix of the the reversed chain and α is the invariant distribution of the reversed process.

Corollary 1.7. Let $Q : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ denote the rate matrix for an irreducible Markov process. If we can find $Q^* : \mathfrak{X} \times \mathfrak{X} \to [0,1]$ and a vector $\pi \in [0,1]^{\mathfrak{X}}$ such that $\sum_{x \in \mathfrak{X}} \pi_x = 1$ and for $y \neq x \in \mathfrak{X}$, we have

$$\pi_x Q_{xy} = \pi_y Q_{yx}^*, \qquad \text{and} \qquad \sum_{y \neq x} Q_{xy} = \sum_{y \neq x} Q_{xy}^*.$$

then Q^* is the rate matrix for the reversed Markov chain and π is the equilibrium distribution for both processes.

2 Applications of Reversed Processes

2.1 Truncated Markov Processes

Definition 2.1. For a Markov process $X : \Omega \to \mathfrak{X}^{\mathbb{R}}$, and a subset $A \subseteq \mathfrak{X}$ the boundary of A is defined as

 $\partial A \triangleq \{ y \notin A : Q_{xy} > 0, \text{ for some } x \in A \}.$

Definition 2.2. Consider a transition rate matrix $Q : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ on the countable state space \mathcal{X} . Given a nonempty subset $A \subseteq \mathcal{X}$, the truncation of Q to A is the transition rate matrix $Q^A : A \times A \to \mathbb{R}$, where for all $x, y \in A$

$$Q_{xy}^{A} \triangleq \begin{cases} Q_{xy}, & y \neq x, \\ -\sum_{z \in A \setminus \{x\}} Q_{xz}, & y = x. \end{cases}$$

Proposition 2.3. Suppose $X : \Omega \to X^{\mathbb{R}}$ is an irreducible, time-reversible CTMC on the countable state space X, with generator $Q : X \times X \to \mathbb{R}$ and stationary probabilities $\pi \in [0,1]^{X}$. Suppose the truncated Markov process to a set of states $A \subseteq X$ is irreducible. Then, any stationary CTMC with state space A and generator Q^{A} is also time-reversible, with stationary probabilities

$$\pi_y^A = \frac{\pi_y}{\sum_{x \in A} \pi_x}, \quad y \in A.$$

Proof. It is clear that π^A is a distribution on state space *A*. We must show the reversibility with this distribution π^A . That is, we must show for all states $x, y \in A$

$$\pi_x^A Q_{xy} = \pi_y^A Q_{yx}$$

However, this is true since the original chain is time reversible.

Example 2.4 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system that has a finite buffer capacity of at most *K* customers. Thus, customers that arrive when there are already *K* customers present are 'rejected'. It follows that the CTMC for this system is simply the M/M/1 CTMC truncated to the state space $\{0, 1, ..., K\}$, and so it must be time-reversible with stationary distribution

$$\pi_i = \frac{\rho^i}{\sum_{j=0}^k \rho^j}, \quad 0 \leqslant i \leqslant k$$

Example 2.5 (Two queues with joint waiting room). Consider two independent M/M/1 queues with arrival and service rates λ_i and μ_i respectively for $i \in [2]$. Then, joint distribution of two queues is

$$\pi(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}, \quad n_1, n_2 \in \mathbb{Z}_+.$$

Suppose both the queues are sharing a common waiting room, where if arriving customer finds *R* waiting customer then it leaves. In this case,

$$\pi(n_1, n_2) = \frac{\rho_1^{n_1} \rho_2^{n_2}}{\sum_{(m_1, m_2) \in A} \rho_1^{m_1} \rho_2^{m_2}}, \quad (n_1, n_2) \in A \subseteq \mathbb{Z}_+ \times \mathbb{Z}_+.$$