Lecture-24: Martingales

1 Martingales

Definition 1.1. Let (Ω, \mathcal{F}, P) be a probability space. A **filtration** is an increasing sequence of σ -fields denoted by $\mathcal{F}_{\bullet} = (\mathcal{F}_n \subseteq \mathcal{F} : n \in \mathbb{N})$, with *n*th σ -field denoted by \mathcal{F}_n .

Definition 1.2. For a discrete stochastic process $X : \Omega \to \mathbb{R}^{\mathbb{N}}$, its **natural filtration** is defined as

$$\mathcal{F}_n \triangleq \sigma(X_1,\ldots,X_n).$$

Definition 1.3. A random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ of random variables is said to be **adapted** to the filtration \mathcal{F}_{\bullet} if $\sigma(X_n) \subseteq \mathcal{F}_n$ for all $n \in \mathbb{N}$.

Remark 1. For any random sequence *X* adapted to a filtration \mathcal{F}_{\bullet} , we also have $\sigma(X_1, \ldots, X_n) \subseteq \mathcal{F}_n$ for each $n \in \mathbb{N}$.

Definition 1.4. A discrete stochastic process $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ is said to be a **martingale** with respect to the filtration \mathcal{F}_{\bullet} if for each $n \in \mathbb{N}$,

- i_− integrability. $\mathbb{E} |X_n| < \infty$,
- ii_− adaptability. $\sigma(X_n) \subseteq \mathcal{F}_n$,
- iii_ unbiasedness. $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$.

If the equality in third condition is replaced by \leq or \geq , then the process is called **supermartingale** or **submartingale**, respectively.

Corollary 1.5. For a martingale X adapted to a filtration \mathcal{F}_{\bullet} , we have

 $\mathbb{E} X_n = \mathbb{E} X_1, \qquad n \in \mathbb{N}.$

Example 1.6 (Simple random walk). Let $\xi : \Omega \to \mathbb{R}^{\mathbb{N}}$ be a sequence of independent random variables with mean $\mathbb{E}\xi_i = 0$ and $\mathbb{E}|\xi_i| < \infty$ for each $i \in \mathbb{N}$. Let \mathcal{F}_{\bullet} be the natural filtration of random sequence ξ , such that $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ for each $n \in \mathbb{N}$. Consider the random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ such that $X_n \triangleq \sum_{i=1}^n \xi_i$ for each $n \in \mathbb{N}$.

Then, the random sequence *X* is a martingale with respect to filtration \mathcal{F}_{\bullet} . This follows, since $\mathbb{E}X_n = 0$, and from the linearity of expectation and the finiteness of finitely many individual terms, the absolute sum $\mathbb{E}|X_n| \leq \sum_{i=1}^n \mathbb{E}|\xi|_i < \infty$. Further, we have

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n + \xi_{n+1}|\mathcal{F}_n] = X_n$$

Example 1.7 (Product martingale). Let $\xi : \Omega \to \mathbb{R}^{\mathbb{N}}$ be a sequence of independent random variables with mean $\mathbb{E}\xi_i = 1$ and $\mathbb{E}|\xi_i| < \infty$ for each $i \in \mathbb{N}$. Let \mathcal{F}_{\bullet} be the natural filtration of random sequence ξ , such that $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$ for each $n \in \mathbb{N}$. Consider the random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ such that $X_n \triangleq \prod_{i=1}^n \xi_i$ for each $n \in \mathbb{N}$, then X is adapted to \mathcal{F}_{\bullet} .

Then, the random sequence *X* is a martingale with respect to filtration \mathcal{F}_{\bullet} . This follows, since $\mathbb{E}X_n = 1$, and from the independence and finiteness of finitely many individual terms the absolute product $\mathbb{E}|X_n| = \prod_{i=1}^n \mathbb{E}\xi_i < \infty$. Further, we have

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_n\xi_{n+1}|\mathcal{F}_n] = X_n.$$

Example 1.8 (Branching process). Consider a population where each individual *i* can produce an independent random number of offsprings Z_i in its lifetime, given by a common distribution $P : \mathbb{Z}_+ \to [0,1]$ and finite mean $\mu = \sum_{j \in \mathbb{N}} jP_j < \infty$. Let X_n denote the size of the *n*th generation, which is same as the number of offsprings generated by (n - 1)th generation. The discrete stochastic process $X : \Omega \to \mathbb{Z}_+^N$ is called a branching process. Let $X_0 = 1$ and consider the natural filtration \mathcal{F}_{\bullet} of X such that $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Then,

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i.$$

Conditioning on X_{n-1} yields, $\mathbb{E}[X_n | \mathcal{F}_{n-1}] = \mathbb{E}[\sum_{i=1}^{X_{n-1}} Z_i | \mathcal{F}_{n-1}] = \mathbb{E}[\sum_{i \in \mathbb{N}} Z_i \mathbb{1}_{\{i \leq X_{n-1}\}} | \mathcal{F}_{n-1}] = \sum_{i \in \mathbb{N}} \mathbb{E}[Z_i | \mathcal{F}_{n-1}] \mathbb{1}_{\{i \leq X_{n-1}\}} = \sum_{i=1}^{X_{n-1}} \mu = \mu X_{n-1}$. Applying expectation on both sides, and by induction on *n*, we get $\mathbb{E}[X_n] = \mu^n$. Consider a positive random sequence $Y : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ defined by $Y_n \triangleq \frac{X_n}{\mu^n}$ for each $n \in \mathbb{N}$. Then *Y* is a martingale with respect to filtration \mathcal{F}_{\bullet} because $\mathbb{E}[Y_n] = 1$, the expectation of absolute value $\mathbb{E}|Y_n| = \frac{\mathbb{E}[X_n]}{\mu^n} = \frac{\mathbb{E}X_n}{\mu^n} = 1$, and

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \frac{1}{\mu^{n+1}} \mathbb{E}[\sum_{i=1}^{X_n} Z_i|\mathcal{F}_n] = \frac{X_n}{\mu^n} = Y_n.$$

Example 1.9 (Doob's Martingale). Consider an arbitrary random sequence $Y : \Omega \to \mathbb{R}^{\mathbb{N}}$ with associated natural filtration \mathcal{F}_{\bullet} , and an arbitrary random variable $Z : \Omega \to \mathbb{R}$ such that $\mathbb{E}|Z| < \infty$. Then, a random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined by $X_n \triangleq \mathbb{E}[Z|\mathcal{F}_n]$ for each $n \in \mathbb{N}$, is a martingale. The integrability condition can be directly verified, the sequence X is adapted to \mathcal{F}_{\bullet} by definition of conditional expectation, and by the tower property of conditional expectation

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[Z|\mathcal{F}_{n+1}]|\mathcal{F}_n] = \mathbb{E}[Z|\mathcal{F}_n] = X_n.$$

Example 1.10 (Centralized Doob sequence). For any sequence of random variables $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ with $\mathbb{E} |X_n| < \infty$ for all $n \in \mathbb{N}$ and its natural filtration \mathcal{F}_{\bullet} , the random variable $X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}]$ is zero mean for each $i \in \mathbb{N}$. Hence, the centralized zero mean sequence $Z : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined by $Z_n \triangleq \sum_{i=1}^n (X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}])$ for each $n \in \mathbb{N}$. Then the random sequence Z is adapted to the filtration \mathcal{F}_{\bullet} and is a martingale with respect to this filtration \mathcal{F}_{\bullet} , provided $\mathbb{E}|Z_n| < \infty$. This is true because $\mathbb{E} |Z_n| \leq \sum_{i=1}^n \mathbb{E} |X_i - \mathbb{E}[X_i|\mathcal{F}_{i-1}]| \leq \sum_{i=1}^n \mathbb{E} |X_i| + \mathbb{E}[|X_i||\mathcal{F}_{i-1}] < \infty$. Further, from the linearity and the tower property of conditional expectation, we have

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[Z_n + X_{n+1} - \mathbb{E}[X_{n+1}|\mathcal{F}_n]|\mathcal{F}_n] = Z_n + \mathbb{E}[X_{n+1}|\mathcal{F}_n] - \mathbb{E}[X_{n+1}|\mathcal{F}_n] = Z_n.$$

Lemma 1.11. Consider a filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_n \subseteq \mathcal{F} : n \in \mathbb{N})$ on the probability space (Ω, \mathcal{F}, P) . Consider a random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ which is a martingale with respect to the filtration \mathcal{F}_{\bullet} , and a convex function $f : \mathbb{R} \to \mathbb{R}$. Then, the random sequence $Y : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined by $Y_n \triangleq f(X_n)$ for each $n \in \mathbb{N}$, is a submartingale with respect to the filtration \mathcal{F}_{\bullet} .

Proof. The result is a direct consequence of Jensen's inequality for conditional expectations, since

$$\mathbb{E}[f(X_{n+1})|\mathcal{F}_n] \ge f(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) = f(X_n).$$

Check if this is true:

$$\mathbb{E}|Y_n| = \mathbb{E}|f(X_n)| \leq |\mathbb{E}[f(X_n)]|$$

If this is not true, what condition is needed for integrability.

Corollary 1.12. Consider a random sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined on the probability space (Ω, \mathcal{F}, P) , with its natural filtration \mathcal{F}_{\bullet} . Let $a \in \mathbb{R}$ be a constant, and consider two random sequences $Y : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ and $Z : \Omega \to \mathbb{R}^{\mathbb{N}}$ generated by X, such that for each $n \in \mathbb{N}$,

$$Y_n \triangleq (X_n - a)_+ = (X_n \lor a) - a,$$
 $Z_n \triangleq X_n \land a.$

- *i*_ If X is a submartingale with respect to \mathbb{F}_{\bullet} , then so is Y with respect to \mathbb{F}_{\bullet} .
- *ii*_ If X is a supermartingale with respect to \mathcal{F}_{\bullet} , then so is Z with respect to \mathcal{F}_{\bullet} .

1.1 Stopping Times

Consider a discrete filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_n \subseteq \mathcal{F} : n \in \mathbb{Z}_+).$

Definition 1.13. A positive integer valued, possibly infinite, random variable *N* is said to be a **random time** with respect to the filtration \mathcal{F}_{\bullet} , if the event $\{N = n\} \in \mathcal{F}_n$ for each $n \in \mathbb{N}$. If $P\{N < \infty\} = 1$, then the random time *N* is said to be a **stopping time**.

Definition 1.14. A random sequence $H : \Omega \to \mathbb{R}^{\mathbb{N}}$ is **predictable** with respect to the filtration \mathcal{F}_{\bullet} , if $\sigma(H_n) \subseteq \mathcal{F}_{n-1}$ for each $n \in \mathbb{N}$. Further, we define

$$(H \cdot X)_n \triangleq \sum_{m=1}^n H_m(X_m - X_{m-1}).$$

Theorem 1.15. Consider a supermartingale sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ and a predictable sequence $H : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ with respect to a filtration \mathcal{F}_{\bullet} , where each H_n is non-negative and bounded. Then the random sequence $Y : \Omega \to \mathbb{R}^N$ defined by $Y_n = (H \cdot X)_n$ for each $n \in \mathbb{N}$ is a supermartingale with respect to \mathcal{F}_{\bullet} .

Proof. It follows from the definition,

$$\mathbb{E}[(H \cdot X)_{n+1} | \mathcal{F}_n] = \mathbb{E}[H_{n+1}(X_{n+1} - X_n) + (H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \leqslant (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \leqslant (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \leqslant (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[X_{n+1} | \mathcal{F}_n] - X_n) + (H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n \cdot \mathbb{E}[(H \cdot X)_n + \mathbb{E}[(H \cdot X)_n | \mathcal{F}_n] = H_{n+1}(\mathbb{E}[(H \cdot X$$

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ adapted to a discrete filtration \mathcal{F}_{\bullet} . Let $T : \Omega \to \mathbb{N}$ be a random time for the filtration \mathcal{F}_{\bullet} , then the **stopped process** $X^T : \Omega \to \mathbb{R}^{\mathbb{N}}$ is defined for each $n \in \mathbb{N}$ as

$$X_n^T \triangleq X_{T \wedge n} = X_n \mathbb{1}_{\{n \leqslant T\}} + X_T \mathbb{1}_{\{n > T\}}.$$

Proposition 1.17. Let $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ be a martingale with a discrete filtration \mathfrak{F}_{\bullet} . If $T : \Omega \to \mathbb{N}$ is an integer random time for the filtration \mathfrak{F}_{\bullet} , then the stopped process $(X_{T \wedge n} : n \in \mathbb{N})$ is a martingale.

Proof. Consider a random sequence $H : \Omega \to \{0,1\}^{\mathbb{N}}$ defined by $H_n \triangleq \mathbb{1}_{\{n \leq T\}}$ for each $n \in \mathbb{N}$. Then H is a non-negative and bounded sequence. Further H is predictable with respect to \mathcal{F}_{\bullet} , since the event

$$\{n \leq T\} = \{T > n-1\} = \{T \leq n-1\}^c = (\bigcup_{i=0}^{n-1} \{T=i\})^c = \bigcap_{i=0}^{n-1} \{T \neq i\} \in \mathcal{F}_{n-1}.$$

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process as

$$X_{T \wedge n} = X_0 + \sum_{m=1}^{T \wedge n} (X_m - X_{m-1}) = X_0 + \sum_{m=1}^n \mathbb{1}_{\{m \le T\}} (X_m - X_{m-1}) = X_0 + (H \cdot X)_n.$$

From the previous theorem, it follows that $X_{T \wedge n}$ is a martingale, and we have $\mathbb{E}X_{T \wedge n} = \mathbb{E}X_{T \wedge 1} = \mathbb{E}X_1$.

Remark 2. For any martingale $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ and a stopping time $T : \Omega \to \mathbb{N}$ adapted to \mathcal{F}_{\bullet} , we have $\mathbb{E}X_{T \wedge n} = \mathbb{E}X_1$, for all $n \in \mathbb{N}$. It is immediate that stopped process converges almost surely to X_T , i.e.

$$P\left\{\lim_{n\in\mathbb{N}}X_{T\wedge n}=X_T\right\}=1.$$

This is true because $T < \infty$ almost surely. We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ be a martingale and $T : \Omega \to \mathbb{N}$ be a stopping time adapted to a discrete filtration \mathfrak{F}_{\bullet} . Then, the random variable X_T is integrable and the stopped process $X_{T \wedge n}$ converges in mean to X_T , i.e.

$$\lim_{n\in\mathbb{N}}\mathbb{E}X_{T\wedge n}=\mathbb{E}X_T=\mathbb{E}X_1,$$

if either of the following conditions holds true.

- (i) T is bounded,
- (*ii*) $X_{T \wedge n}$ *is uniformly bounded*,
- (iii) $\mathbb{E}T < \infty$, and for some real positive K, we have $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_{n+1} X_n||\mathcal{F}_n] < K$.

Proof. We show this is true for all three cases.

(i) Let *K* be the bound on *T* then for all $n \ge K$, we have $X_{T \land n} = X_T$, and hence it follows that

$$\mathbb{E}X_1 = \mathbb{E}X_{T \wedge n} = \mathbb{E}X_T$$
, for all $n \ge K$.

- (ii) Dominated convergence theorem implies the result.
- (iii) Since *T* is integrable and $X_{T \wedge n} \leq |X_1| + KT$, we observe that $X_{T \wedge n}$ is bounded by an integrable random variable. The result follows from dominated convergence theorem.

Corollary 1.19 (Wald's Equation). *If T is a stopping time for the discrete* i.i.d. *random sequence* $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ *with* $\mathbb{E}|X| < \infty$ *and* $\mathbb{E}T < \infty$ *, then*

$$\mathbb{E}\sum_{i=1}^{T}X_{i}=\mathbb{E}T\mathbb{E}X.$$

Proof. Let $\mu = \mathbb{E}X$ and define a random sequence $Z : \Omega \to \mathbb{R}^{\mathbb{N}}$ such that $Z_n \triangleq \sum_{i=1}^{n} (X_i - \mu)$ for each $n \in \mathbb{N}$, Then *Z* is a martingale adapted to natural filtration of *X*, and hence from the Martingale stopping theorem, we have $\mathbb{E}Z_T = \mathbb{E}Z_1 = 0$. However, we observe that

$$\mathbb{E}[Z_T] = \mathbb{E}\sum_{i=1}^T X_i - \mu \mathbb{E}T.$$

Observe that condition (*iii*) for Martingale stopping theorem to hold can be directly verified. Hence the result follows. \Box