Lecture-26: Martingale Concentration Inequalities

1 Introduction

Consider a probability space (Ω, \mathcal{F}, P) and a discrete filtration $\mathcal{F}_{\bullet}=\left(\mathcal{F}_{n} \subseteq \mathcal{F}: n \in \mathbb{N}\right)$. Let $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be discrete random process and stopping time $\tau: \Omega \rightarrow \mathbb{N}$, both adapted to the filtration \mathcal{F}_{\bullet}.

Lemma 1.1. If X is a submartingale and τ is a bounded stopping time such that $P\{\tau \leqslant n\}=1$ then

$$
\mathbb{E} X_{1} \leqslant \mathbb{E} X_{\tau} \leqslant \mathbb{E} X_{n}
$$

Proof. Since τ is bounded, it follows from the optional stopping theorem that $\mathbb{E}\left[X_{\tau}\right] \geqslant \mathbb{E}\left[X_{1}\right]$. Further, we observe that $\{\tau=k\} \in \mathcal{F}_{k}$ and X is a submartingale, and therefore

$$
\mathbb{E}\left[X_{n} \mathbb{1}_{\{\tau=k\}} \mid \mathcal{F}_{k}\right]=\mathbb{1}_{\{\tau=k\}} \mathbb{E}\left[X_{n} \mid \mathcal{F}_{k}\right] \geqslant \mathbb{1}_{\{\tau=k\}} X_{k}=X_{\tau} \mathbb{1}_{\{\tau=k\}} .
$$

It follows that $\mathbb{E}\left[X_{n} \mathbb{1}_{\{\tau=k\}}\right] \geqslant \mathbb{E}\left[X_{\tau} \mathbb{1}_{\{\tau=k\}}\right]$. In addition, $\sum_{k=1}^{n} \mathbb{1}_{\{\tau=k\}}=1$ almost surely, and hence we observe that

$$
\mathbb{E} X_{\tau}=\mathbb{E}\left[X_{\tau} \sum_{k=1}^{n} \mathbb{1}_{\{\tau=k\}}\right] \leqslant \sum_{k=1^{n}} \mathbb{E}\left[X_{n} \mathbb{1}_{\{\tau=k\}}\right]=\mathbb{E} X_{n}
$$

Theorem 1.2 (Kolmogorov's inequality for submartingales). For a non-negative submartingale X and $a>0$,

$$
P\left\{\max _{i \in[n]} X_{i}>a\right\} \leqslant \frac{\mathbb{E}\left[X_{n}\right]}{a} .
$$

Proof. We define a random time $\tau_{a} \triangleq \inf \left\{i \in \mathbb{N}: X_{i}>a\right\}$ and stopping time $\tau \triangleq \tau_{a} \wedge n$. It follows that,

$$
\left\{\max _{i \in[n]} X_{i}>a\right\}=\cup_{i \in[n]}\left\{X_{i}>a\right\}=\left\{X_{\tau}>a\right\}
$$

Using this fact and Markov inequality, we get $P\left\{\max _{i \in[n]} X_{i}>a\right\}=P\left\{X_{\tau}>a\right\} \leqslant \frac{\mathbb{E}\left[X_{\tau}\right]}{a}$. Since $\tau \leqslant n$ is a bounded stopping time, result follows from the Lemma 1.1

Corollary 1.3. For a martingale X and positive constant a,

$$
P\left\{\max _{i \in[n]}\left|X_{i}\right|>a\right\} \leqslant \frac{\mathbb{E}\left|X_{n}\right|}{a}, \quad P\left\{\max _{i \in[n]}\left|X_{i}\right|>a\right\} \leqslant \frac{\mathbb{E} X_{n}^{2}}{a^{2}}
$$

Proof. The proof the above statements follow from and Kolmogorov's inequality for submartingales, and by considering the convex functions $f(x)=|x|$ and $f(x)=x^{2}$.

Theorem 1.4 (Strong Law of Large Numbers). Let $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ be a random walk with i.i.d. step size X having finite mean μ. If the moment generating function $M(t)=\mathbb{E}\left[e^{t X_{n}}\right]$ for random variable X_{n} exists for all $t \in \mathbb{R}_{+}$, then

$$
P\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}=1
$$

Proof. For a given $\epsilon>0$, we define $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$for all $t \in \mathbb{R}_{+}$as $g(t) \triangleq \frac{e^{t(\mu+\epsilon)}}{M(t)}$. Then, it is clear that $g(0)=1$ and

$$
g^{\prime}(0)=\frac{M(0)(\mu+\epsilon)-M^{\prime}(0)}{M^{2}(0)}=\epsilon>0 .
$$

Hence, there exists a value $t_{0}>0$ such that $g\left(t_{0}\right)>1$. We now show that $\frac{S_{n}}{n}$ can be as large as $\mu+\epsilon$ only finitely often. To this end, note that

$$
\begin{equation*}
\left\{\frac{S_{n}}{n} \geqslant \mu+\epsilon\right\} \subseteq\left\{\frac{e^{t_{0} S_{n}}}{M\left(t_{0}\right)^{n}} \geqslant g\left(t_{0}\right)^{n}\right\} \tag{1}
\end{equation*}
$$

However, $Y_{n} \triangleq \frac{e^{t_{0} S_{n}}}{M^{n}\left(t_{0}\right)}=\prod_{i=1}^{n} \frac{e^{t_{0} X_{i}}}{M\left(t_{0}\right)}$ is a product of independent non negative random variables with unit mean, and hence is a non-negative martingale with $\sup _{n} \mathbb{E} Y_{n}=1$. By martingale convergence theorem, the limit $\lim _{n \in \mathbb{N}} Y_{n}$ exists and is finite.

Since $g\left(t_{0}\right)>1$, it follows from (1) that

$$
P\left\{\frac{S_{n}}{n} \geqslant \mu+\epsilon \text { for an infinite number of } \mathrm{n}\right\}=0
$$

Similarly, defining the function $f(t) \triangleq \frac{e^{t(\mu-\epsilon)}}{M(t)}$ and noting that since $f(0)=1$ and $f^{\prime}(0)=-\epsilon$, there exists a value $t_{0}<0$ such that $f\left(t_{0}\right)>1$, we can prove in the same manner that

$$
P\left\{\frac{S_{n}}{n} \leqslant \mu-\epsilon \text { for an infinite number of } \mathrm{n}\right\}=0
$$

Hence, result follows from combining both these results, and taking limit of arbitrary ϵ decreasing to zero.

Definition 1.5. A discrete random process $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with distribution function $F_{n} \triangleq F_{X_{n}}$ for each $n \in \mathbb{N}$, is said to be uniformly integrable if for every $\epsilon>0$, there is a y_{ϵ} such that for each $n \in \mathbb{N}$

$$
\mathbb{E}\left[\left|X_{n}\right| \mathbb{1}_{\left\{\left|X_{n}\right|>y_{\epsilon}\right\}}\right]=\int_{|x|>y_{\epsilon}}|x| d F_{n}(x)<\epsilon
$$

Lemma 1.6. If $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ is uniformly integrable then there exists finite M such that $\mathbb{E}\left|X_{n}\right|<M$ for all $n \in \mathbb{N}$.

Proof. Let y_{1} be as in the definition of uniform integrability. Then

$$
\mathbb{E}\left|X_{n}\right|=\int_{|x| \leqslant y_{1}}|x| d F_{n}(x)+\int_{|x|>y_{1}}|x| d F_{n}(x) \leqslant y_{1}+1
$$

1.1 Generalized Azuma Inequality

Lemma 1.7. For a zero mean random variable X with support $[-\alpha, \beta]$ and any convex function f

$$
\mathbb{E} f(X) \leqslant \frac{\beta}{\alpha+\beta} f(-\alpha)+\frac{\alpha}{\alpha+\beta} f(\beta)
$$

Proof. From convexity of f, any point (X, Y) on the line joining points $(-\alpha, f(-\alpha)$ and $(\beta, f(\beta))$ is

$$
Y=f(-\alpha)+(X+\alpha) \frac{f(\beta)-f(-\alpha)}{\beta+\alpha} \geqslant f(X)
$$

Result follows from taking expectations on both sides.
Lemma 1.8. For $\theta \in[0,1]$ and $\bar{\theta} \triangleq 1-\theta$, we have $\theta e^{\bar{\theta} x}+\bar{\theta} e^{-\theta x} \leqslant e^{x^{2} / 8}$.
Proof. Defining $\alpha \triangleq 2 \theta-1, \beta \triangleq \frac{x}{2}$, and $f(\alpha, \beta) \triangleq \cosh \beta+\alpha \sinh \beta-e^{\alpha \beta+\beta^{2} / 2}$, we can write

$$
\theta e^{\bar{\theta} x}+\bar{\theta} e^{-\theta x}-e^{x^{2} / 8}=\frac{(1+\alpha)}{2} e^{(1-\alpha) \beta}-\frac{(1-\alpha)}{2} e^{-(1+\alpha) \beta}-e^{\beta^{2} / 2}=e^{-\alpha \beta} f(\alpha, \beta) .
$$

Therefore, we need to show that $f(\alpha, \beta) \leqslant 0$ for all $\alpha \in[-1,1]$ and $\beta \in \mathbb{R}$. This inequality is true for $|\alpha|=1$ and sufficiently large β. Therefore, it suffices to show this for $\beta<M$ for some M. We take the partial derivative of $f(\alpha, \beta)$ with respect to variables α, β and equate it to zero to get the stationary point,

$$
\sinh \beta+\alpha \cosh \beta=(\alpha+\beta) e^{\alpha \beta+\beta^{2} / 2}, \quad \sinh \beta=\beta e^{\alpha \beta+\beta^{2} / 2}
$$

If $\beta \neq 0$, then the stationary point satisfies $1+\alpha \operatorname{coth} \beta=1+\frac{\alpha}{\beta}$, with the only solution being $\beta=\tanh \beta$. By Taylor series expansion, it can be seen that there is no other solution to this equation other than $\beta=0$. Since $f(\alpha, 0)=0$, the lemma holds true.

Proposition 1.9. Let X be a zero-mean martingale with respect to filtration \mathcal{F}_{\bullet}, such that $-\alpha \leqslant X_{n}-X_{n-1} \leqslant \beta$ for each $n \in \mathbb{N}$. Then, for any positive values a and b

$$
\begin{equation*}
P\left\{X_{n} \geqslant a+b n \text { for some } n\right\} \leqslant \exp \left(-\frac{8 a b}{(\alpha+\beta)^{2}}\right) \tag{2}
\end{equation*}
$$

Proof. Let $X_{0}=0$ and $c>0$, then we define a random sequence $W: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ adapted to filtration \mathcal{F}_{\bullet}, such that

$$
W_{n} \triangleq e^{c\left(X_{n}-a-b n\right)}=W_{n-1} e^{-c b} e^{c\left(X_{n}-X_{n-1}\right)}, \quad n \in \mathbb{Z}_{+}
$$

We will show that W is a supermartingale with respect to the filtration $\mathcal{F}_{\mathbf{0}}$. It is easy to see that $\sigma\left(W_{n}\right) \in$ \mathcal{F}_{n} for each $n \in \mathbb{N}$. We can also see that $\mathbb{E}\left|W_{n}\right|<\infty$ for all n. Further, we observe

$$
\mathbb{E}\left[W_{n} \mid \mathcal{F}_{n-1}\right]=W_{n-1} e^{-c b} \mathbb{E}\left[e^{c\left(X_{n}-X_{n-1}\right)} \mid \mathcal{F}_{n-1}\right] .
$$

Applying Lemma ?? to the convex function $f(x)=e^{c x}$, replacing expectation with conditional expectation, the fact that $\mathbb{E}\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right]=0$, and setting $\theta=\frac{\alpha}{(\alpha+\beta)} \in[0,1]$, we obtain that

$$
\mathbb{E}\left[e^{c\left(X_{n}-X_{n-1}\right)} \mid \mathcal{F}_{n-1}\right] \leqslant \frac{\beta e^{-c \alpha}+\alpha e^{c \beta}}{\alpha+\beta}=\bar{\theta} e^{-c(\alpha+\beta) \theta}+\theta e^{c(\alpha+\beta) \bar{\theta}} \leqslant e^{c^{2}(\alpha+\beta)^{2} / 8} .
$$

The second inequality follows from Lemma ?? with $x=c(\alpha+\beta)$ and $\theta=\frac{\alpha}{(\alpha+\beta)} \in[0,1]$. Fixing the value $c=\frac{8 b}{(\alpha+\beta)^{2}}$, we obtain

$$
\mathbb{E}\left[W_{n} \mid \mathcal{F}_{n-1}\right] \leqslant W_{n-1} e^{-c b+\frac{c^{2}(\alpha+\beta)^{2}}{8}}=W_{n-1} .
$$

Thus, W is a supermartingale. For a fixed positive integer k, define the bounded stopping time τ by

$$
\tau \triangleq \inf \left\{n \in \mathbb{N}: X_{n} \geqslant a+b n\right\} \wedge k
$$

Now, using Markov inequality and optional stopping theorem, we get

$$
P\left\{X_{\tau} \geqslant a+b \tau\right\}=P\left\{W_{\tau} \geqslant 1\right\} \leqslant \mathbb{E}\left[W_{\tau}\right] \leqslant \mathbb{E}\left[W_{0}\right]=e^{-c a}=e^{-\frac{8 a b}{(\alpha a \beta)^{2}}}
$$

The above inequality is equivalent to $P\left\{X_{n} \geqslant a+b n\right.$ for some $\left.n \leqslant k\right\} \leqslant e^{-8 a b /(\alpha+\beta)^{2}}$. Since, the choice of k was arbitrary, the result follow from letting $k \rightarrow \infty$.

Theorem 1.10 (Generalized Azuma inequality). Let X be a zero-mean martingale, such that $-\alpha \leqslant X_{n}-$ $X_{n-1} \leqslant \beta$ for all $n \in \mathbb{N}$. Then, for any positive constant c and integer m

$$
P\left\{X_{n} \geqslant n c \text { for some } n \geqslant m\right\} \leqslant e^{-\frac{2 m c^{2}}{(\alpha+\beta)^{2}}}, \quad P\left\{X_{n} \leqslant-n c \text { for some } n \geqslant m\right\} \leqslant e^{-\frac{2 m c^{2}}{(\alpha+\beta)^{2}}} .
$$

Proof. Observe that if there is an n such that $n \geqslant m$ and $X_{n} \geqslant n c$ then for that n, we have $X_{n} \geqslant n c \geqslant$ $\frac{m c}{2}+\frac{n c}{2}$. Using this fact and previous proposition for $a=\frac{m c}{2}$ and $b=\frac{c}{2}$, we get

$$
P\left\{X_{n} \geqslant n c \text { for some } n \geqslant m\right\} \leqslant P\left\{X_{n} \geqslant \frac{m c}{2}+\frac{c}{2} n \text { for some } n\right\} \leqslant e^{-\frac{8 \frac{m c}{2} \frac{c}{2}}{(\alpha+\beta)^{2}}}
$$

This proves first inequality, and second inequality follows by considering the martingale $-X$.

