Lecture-28: Random Walks

1 Introduction

Definition 1.1. Let $X: \Omega \rightarrow X^{\mathbb{N}}$ be a step-size sequence of i.i.d. random variables, where $X \subseteq \mathbb{R}$ and $\mathbb{E}\left|X_{n}\right|<\infty$. We define $S_{0} \triangleq 0$ and the location of a particle after n steps as $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$. Then the sequence $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ is called a random walk process.

Example 1.2 (Simple random walk). If the step-size alphabet $X=\{-1,1\}$, then the random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ is simple.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative random variables indicating inter-renewal times, then S_{n} is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite $n \in \mathbb{N}$, the joint distributions of finite sequence ($X_{1}, X_{2}, \cdots, X_{n}$) and the reversed sequence $\left(X_{n}, X_{n-1}, \cdots, X_{1}\right)$ are identical, for any i.i.d. step-size sequence $X: \Omega \rightarrow X^{\mathbb{N}}$.
Proof. Since $X: \Omega \rightarrow X^{\mathbb{N}}$ is a sequence of i.i.d. random variables, it is exchangeable. The reversed sequence is $\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$ where $\sigma:[n] \rightarrow[n]$ is permutation with $\sigma(i)=n-i+1$.
Corollary 2.2. For any random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, the distributions of S_{k} and $S_{n}-S_{n-k}$ are identical for any $k \in[n]$.
Proof. Using duality principle, we can write the following equality for any $x \in \mathbb{R}$ and step $k \in[n]$

$$
P\left\{S_{k} \leqslant x\right\}=P\left\{\sum_{i=1}^{k} X_{i} \leqslant x\right\}=P\left\{\sum_{i=1}^{k} X_{n-i+1} \leqslant x\right\}=P\left\{\sum_{i=n-k+1}^{n} X_{i} \leqslant x\right\}=P\left\{S_{n}-S_{n-k} \leqslant x\right\}
$$

Corollary 2.3. For any random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, for any finite $n \in \mathbb{N}$, the joint distributions of finite sequence $\left(S_{1}, S_{2}, \cdots, S_{n}\right) \stackrel{d}{=}\left(S_{n}-S_{n-1}, S_{n}-S_{n-2}, \cdots, S_{n}\right)$.

Proposition 2.4. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with an i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ having positive mean. The first hitting time of the random walk S to set of positive real numbers, $\tau \triangleq \min \left\{n \in \mathbb{N}: S_{n}>0\right\}$, has finite mean. That is, $\mathbb{E} \tau<\infty$.

Proof. Consider a discrete process $T: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$, where $T_{0} \triangleq 0$ and for each $k \in \mathbb{Z}_{+}$

$$
T_{k+1} \triangleq \inf \left\{n>T_{k}: S_{n} \leqslant S_{T_{k}}\right\}=T_{k}+\inf \left\{n \in \mathbb{N}: S_{T_{k}+n} \leqslant S_{T_{k}}\right\}
$$

We observe that T_{k} is a stopping time adapted to the natural filtration of step-size sequence X for each $k \in \mathbb{N}$. Further, we can write the difference $T_{k+1}-T_{k}=\inf \left\{n \in \mathbb{N}: \sum_{i=1}^{n} X_{T_{k}+i} \leqslant 0\right\}$, From the strong Markov property for i.i.d. sequences, the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is identical to that of $\left(X_{T_{k}+1}, \ldots, X_{T_{k}+n}\right)$, for any finite $n \in \mathbb{N}$. Therefore, it follows that $S_{T_{k}+n}-S_{T_{k}}$ has identical distribution to S_{n}, and is independent of step-size process X stopped at time T_{k}. Hence, the sequence $\left(T_{k}-T_{k-1}: k \in \mathbb{N}\right)$ is i.i.d., with complementary distribution

$$
\bar{F}(m)=P\left\{T_{k+1}-T_{k}>m\right\}=P\left\{T_{1}>m\right\}=P\left\{S_{1}>0, S_{2}>0, \ldots, S_{m}>0\right\}
$$

Therefore, $T: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$ is a renewal process such that $\left\{T_{1}=n\right\}$ implies that $\left\{S_{n} \leqslant \min \left\{0, S_{1}, \ldots, S_{n-1}\right\}\right\}$. That is, we can write

$$
\left\{T_{1}=n\right\}=\left\{S_{1}>0, \ldots, S_{n-1}>0\right\} \cap\left\{S_{n} \leqslant \min \left\{0, S_{1}, \ldots, S_{n-1}\right\}\right\}=\left\{S_{1}>0, \ldots, S_{n-1}>0, S_{n} \leqslant 0\right\} .
$$

Hence, T_{k} denotes the k th renewal instant corresponding to the random walk S_{n} hitting k th low. We can define the inverse counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$ for this renewal process as $N_{n} \triangleq \sum_{j=1}^{n} \mathbb{1}_{\left\{T_{j} \leqslant n\right\}}$, or $\left\{N_{n} \geqslant k\right\}=\left\{T_{k} \leqslant n\right\}$. From definition of stopping time τ and duality principle, we can write $P\{\tau>n\}=P\left(\cap_{k=1}^{n}\left\{S_{k} \leqslant 0\right\}\right)=P\left(\cap_{k=1}^{n}\left\{S_{n} \leqslant S_{n-k}\right\}\right)=P\left\{S_{n} \leqslant \min \left\{0, S_{1}, \ldots, S_{n-1}\right\}\right\}=P\left(\cup_{k=1}^{n}\left\{T_{k}=n\right\}\right)$.

The event of renewal process hitting a new low at n is same as some renewal occurring at time n. That is,

$$
N_{\infty}=\sum_{k \in \mathbb{N}} \mathbb{1}_{\left\{T_{k}<\infty\right\}}=\sum_{k \in \mathbb{N}} \sum_{n \geqslant k} \mathbb{1}_{\left\{T_{k}=n\right\}}=\sum_{n \in \mathbb{N}} \sum_{k=1}^{n} \mathbb{1}_{\left\{T_{k}=n\right\}} .
$$

Therefore, we can write the mean of stopping time τ as

$$
\mathbb{E} \tau=1+\sum_{n \in \mathbb{N}} P\{\tau>n\}=1+\sum_{n \in \mathbb{N}} \sum_{k=1}^{n} P\left\{T_{k}=n\right\}=1+\mathbb{E} N_{\infty} .
$$

Since $\mathbb{E} X_{1}>0$, it follows from strong law of large numbers that $S_{n} \rightarrow \infty$. Hence, the expected number of renewals that occur is finite. Elaborate. Thus $\mathbb{E} N_{\infty}<\infty$ and hence $\mathbb{E} \tau<\infty$.

Definition 2.5. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with $S_{0} \triangleq 0$. The number of distinct values of $\left(S_{0}, \cdots, S_{n}\right)$ is called range, denoted by R_{n}. We define the first hitting time of random walk S to $x \in \mathbb{R}$ as the stopping time

$$
T_{x} \triangleq \inf \left\{n \in \mathbb{N}: S_{n}=x\right\}
$$

Proposition 2.6. For a simple random walk, $\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}=P\left\{T_{0}=\infty\right\}$.
Proof. We can define indicator function for S_{k} being a distinct number from S_{0}, \ldots, S_{k-1}, as

$$
I_{k} \triangleq \mathbb{1}_{\left\{S_{k} \neq S_{k-1}, \ldots, S_{k} \neq S_{0}\right\}} .
$$

Then, we can write range R_{n} in terms of indicator I_{k} as $R_{n}=1+\sum_{k=1}^{n} I_{k}$. From the duality principle

$$
P\left(\cap_{i=1}^{k}\left\{S_{k} \neq S_{k-i}\right\}\right)=P\left(\cap_{i=1}^{k}\left\{S_{i} \neq 0\right\}\right), \quad k \in \mathbb{N} .
$$

Therefore, we can write

$$
\mathbb{E} R_{n}=1+\sum_{k=1}^{n} P\left\{S_{1} \neq 0, \ldots, S_{k} \neq 0\right\}=\sum_{k=0}^{n} P\left\{T_{0}>k\right\} .
$$

Result follows by dividing both sides by n and taking limits.

2.1 Simple random walk

Theorem 2.7 (range). For a simple random walk with $P\left\{X_{1}=1\right\}=p$, the following holds

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}= \begin{cases}2 p-1, & p>\frac{1}{2} \\ 2(1-p)-1, & p \leqslant \frac{1}{2}\end{cases}
$$

Proof. When $p=\frac{1}{2}$, this random walk is recurrent and thus from the Proposition 2.5 , we have

$$
P\left\{T_{0}=\infty\right\}=0=\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n} .
$$

For $p>\frac{1}{2}$, let $\alpha \triangleq P\left(\left\{T_{0}<\infty\right\} \mid\left\{X_{1}=1\right\}\right)$. Since $\mathbb{E} X>0$, we know that $S_{n} \rightarrow \infty$ and hence

$$
P\left(\left\{T_{0}<\infty\right\} \mid\left\{X_{1}=-1\right\}\right)=1
$$

We can write unconditioned probability of return of random walk to 0 as

$$
P\left\{T_{0}<\infty\right\}=\alpha p+(1-p)
$$

Since $T_{0}=2$ when $S_{2}=0$, we have $P\left(\left\{T_{0}<\infty\right\} \mid\left\{S_{2}=0\right\}\right)=1$. Conditioning on X_{2}, from strong law of large numbers, we get
$\alpha=P\left(\left\{T_{0}<\infty, X_{2}=1\right\} \mid\left\{S_{1}=1\right\}\right)+P\left(\left\{T_{0}<\infty, X_{2}=-1\right\} \mid\left\{S_{1}=1\right\}\right)=p P\left(\left\{T_{0}<\infty\right\} \mid\left\{S_{2}=2\right\}\right)+(1-p)$.
From Markov property and homogeneity of random walk process, it follows that

$$
\begin{aligned}
P\left(\left\{T_{0}<\infty\right\} \mid\left\{S_{2}=\right.\right. & 2\})=\frac{P\left(T_{0}<\infty, S_{2}=2\right)}{\left.P\left(S_{2}=2\right)\right)}=\frac{P\left(T_{0}<\infty, T_{1}<\infty, S_{2}=2\right)}{\left.P\left(S_{2}=2\right)\right)} \\
& =P\left(\left\{T_{0}<\infty\right\} \mid\left\{T_{1}<\infty\right\}\right) P\left(\left\{T_{1}<\infty\right\} \mid\left\{S_{2}=2\right\}\right)=\alpha^{2}
\end{aligned}
$$

Elaborate this. We conclude $\alpha=\alpha^{2} p+1-p$, and since $\alpha<1$ due to transience, we get $\alpha=\frac{1-p}{p}$, and hence the result follows. We can show similarly for the case when $p<1 / 2$.

