
Lecture-03: Conditional Expectation

1 Conditional expectation

Consider a probability space (Ω,F, P).

Definition 1.1. For a random variable X, the conditional distribution conditioned on an event E ∈ F is
given by

FX|E(x)≜
P({X ⩽ x} ∩ E)

P(E)
.

Remark 1. We can verify that F
X
∣∣ E

: R → [0,1] is a distribution function for any E ∈ F.

Definition 1.2. For any Borel measurable function g : R → R and a random variable X : Ω → R defined
on the probability space (Ω,F, P), the conditional expectation of a random variable g(X) given an event
E is given by

E[g(X)
∣∣ E]≜

∫
x∈R

g(x)dFX|E(x).

Example 1.3. Consider two random variables X,Y defined on the same probability space (Ω,F, P)
with the joint distribution FX,Y(x,y) = P({X ⩽ x,Y ⩽ y}). For each y ∈ R, we define event Gy ≜
Y−1(−∞,y] ∈ F such that FY(y) = P(Gy). Then, for each y ∈ R such that P(Gy) > 0, we can write
the conditional distribution of X given the event Gy as

FX|Gy(x) =
FX,Y(x,y)

FY(y)
.

The conditional expectation of X given the event Gy is defined as

E[X|Gy] =
∫

x∈R
xdFX|Gy(x) =

∫
x∈R

x
dxFX,Y(x,y)

FY(y)
.

Example 1.4. Consider a random variable X : Ω → R and a simple random variable Y : Ω → Y

defined on the same probability space. We observe that the conditional distribution of X given
the nontrivial event Ey = Y−1 {y} for y ∈ Y is FX|Ey(x) = P({X⩽x,Y=y})

P(Ey)
. Therefore, the conditional

expectation of X given the event Ey is

E[X | Ey] = E[X | Y = y] =
∫

x∈R
xdxFX|Ey(x) =

∫
x∈R

x
∫

z=y

dFX,Y(x,z)
P(Ey)

=
E[X1Ey ]

P(Ey)
.

Since E[X | Ey] is a scalar, we can write E[X1Ey ] = E[E[X | Ey]1Ey ].

Definition 1.5. Consider a random variable X : Ω → R defined on probability space (Ω,F, P), and an
event subspace E ⊆ F. The conditional expectation of X given E is denoted E[X|E] and is a random
variable Z ≜ E[X|E] : Ω → R where

1 measurability: For each B ∈ B(R), we have Z−1(B) ∈ E, and

2 orthogonality: for each event E ∈ E, we have E[X1E] = E[Z1E], and

3 integrability: E |Z| < ∞.
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Proposition 1.6. Conditional expectation is unique almost surely.

Proof. Consider a random variable X : Ω → R defined on a probability space (Ω,F, P) and a sub event
space E ⊆ F. Let Z1 and Z2 be conditional expectations of X given E. It suffices to show that Aϵ ≜
{ω ∈ Ω : Z1 − Z2 > ϵ} ∈ E and Bϵ ≜ {ω ∈ Ω : Z2 − Z1 > ϵ} ∈ E defined for each ϵ > 0 has measure
P(Aϵ) = P(Bϵ) = 0. From the definition of conditional expectation and linearity of expectation, we
can write

0 ⩽ ϵP(Aϵ) < E[(Z1 − Z2)1Aϵ
] = E[X1Aϵ

]− E[X1Aϵ
] = 0.

Similarly, we can show that P(Bϵ) = 0, and the result follows.

Remark 2. Any random variable Z : Ω → R that satisfies the measurability, orthogonality, and inte-
grability, is the conditional expectation of X given the sub-event space E from the a.s. uniqueness of
conditional expectations.

Remark 3. Intuitively, we think of the event subspace E as describing the information we have. For each
A ∈ E, we know whether or not A has occurred. The conditional expectation E[X|E] is the “best guess”
of the value of X given the information E.

Definition 1.7. Consider a random variable X : Ω → R and a random vector Y : Ω → Rn defined on the
same probability space (Ω,F, P). The conditional expectation of X given Y is defined as

E[X | Y]≜ E[X | σ(Y)].

Proposition 1.8. For two random variables X,Y : Ω → R defined on the same probability space (Ω,F, P), the
conditional expectation E[X | Y] is a function of Y.

Proof. We denote the conditional expectation E[X | Y] by a σ(Y)-measurable random variable Z : Ω →
R. It suffices to show that for any y ∈ R, the conditional expectation Z(ω) remains constant on the set of
outcomes ω ∈Y−1 {y}. First, we show that for any event A ∈ σ(Y), either Y−1 {y} ⊆ A or A∩Y−1 {y}=
∅. This follows from the fact that either y ∈ A or y /∈ A. Next, we suppose that there exists a y ∈ R and
ω1,ω2 ∈Y−1 {y} such that Z(ω1) ̸= Z(ω2). It follows that there exists an event B ≜ Z−1 {Z(ω1)} ∈ σ(Z)
such that ω1 ∈ B and ω2 /∈ B. Since Z is σ(Y)-measurable, it follows that B ∈ σ(Z)⊆ σ(Y). This leads to
a contradiction.

Proposition 1.9. Let X,Y be random variables on the probability space (Ω,F, P) such that E |X| ,E |Y| < ∞.
Let G and H be sub-event spaces of F. Then

1. linearity: E[αX + βY
∣∣ G] = αE[X

∣∣ G] + βE[Y
∣∣ G], a.s.

2. monotonicity: If X ⩽ Y a.s., then E[X
∣∣ G]⩽ E[Y

∣∣ G], a.s.

3. identity: If X is G-measurable and E |X| < ∞, then X = E[X
∣∣ G] a.s. In particular, c = E[c

∣∣ G], for any
constant c ∈ R.

4. conditional Jensen’s inequality: If ψ : R → R is convex and E |ψ(X)| < ∞, then E[ψ(X)
∣∣ G] ⩾

ψ(E[X
∣∣ G]), a.s.

5. pulling out what’s known: If Y is G-measurable and E |XY| < ∞, then E[XY
∣∣ G] = YE[X

∣∣ G], a.s.

6. L2-projection: If E |X|2 < ∞, then ζ∗ = E[X
∣∣ G] minimizes E[(X − ζ)2] over all G-measurable random

variables ζ such that E |ζ|2 < ∞.

7. tower property: If H ⊆ G, then E[E[X
∣∣ G] ∣∣H] = E[X

∣∣H], a.s..

8. irrelevance of independent information: If H is independent of σ(G,σ(X)) then

E[X|σ(G,H)] = E[X
∣∣ G], a.s.

In particular, if X is independent of H, then E[X
∣∣H] = E[X], a.s.

Proof. Let X,Y be random variables on the probability space (Ω,F, P) such that E |X| ,E |Y| < ∞. Let G
and H be event spaces such that G,H ⊆ F.
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1. linearity: Let Z ≜ αE[X
∣∣ G] + βE[Y

∣∣ G], then since E[X
∣∣ G],E[Y ∈ G] are G-measurable, it follows

that their linear combination Z is also G-measurable. The integrability follows from the following
triangle inequality and the monotonicity of expectation

|Z|⩽ |α| |E[X | G]|+ |β| |E[Y | G]| .

Further, for any event F ∈ G, from the linearity of expectation and definition of conditional expec-
tation, we have

E[Z1G] = αE[E[X
∣∣ G]1G] + βE[E[Y

∣∣ G]1G] = E[(αX + βY)1G].

2. monotonicity: Let ϵ > 0 and define Aϵ ≜
{

E[X
∣∣ G]− E[Y

∣∣ G] > ϵ
}
∈ G. Then from the definition

of conditional expectation, we have

0 ⩽ E[(E[X
∣∣ G]− E[Y

∣∣ G])1Aϵ
] = E[(X − Y)1Aϵ

]⩽ 0.

Thus, we obtain that P(Aϵ) = 0 for all ϵ > 0. Taking limit ϵ ↓ 0, we get 0 = limϵ↓0 P(Aϵ) =
P(limϵ Aϵ) = P(A0).

3. identity: It follows from the definition that X satisfies all three conditions for conditional expec-
tation. The event space generated by any constant function is the trivial event space {∅,Ω} ⊆ G

for any event space. Hence, E[c
∣∣ G] = c.

4. conditional Jensen’s inequality: We will use the fact that a convex function can always be repre-
sented by the supremum of a family of affine functions. Accordingly, we will assume for a convex
function ψ : R → R, we have linear functions ϕi : R → R and constants ci ∈ R for all i ∈ I such that
ψ = supi∈I(ϕi + ci).

For each i ∈ I, we have ϕi(E[X
∣∣ G]) + ci = E[ϕi(X)

∣∣ G] + ci ⩽ E[ψ(X)
∣∣ G] from the linearity and

monotonicity of conditional expectation. It follows that

ψ(E[X
∣∣ G]) = sup

i∈I
(ϕi(E[X

∣∣ G]) + ci)⩽ E[ψ(X)
∣∣ G].

5. pulling out what’s known: Let Y be G-measurable and E |XY| < ∞. Since Y is given to be G-
measurable, conditional expectation E[X

∣∣ G] is G-measurable by definition, and product function
is Borel measurable, it follows that YE[X | G] is G-measurable.

It suffices to show that E[XY1G] = E[YE[X
∣∣ G]1G] for all events G ∈ G and E |YE[X | G]| < ∞,

when Y is a simple G-measurable random variable such that E |XY| < ∞. It follows that, we
can write Y = ∑y∈Y y1Ey for finite Y and Ey ≜ Y−1 {y} ∈ G for all y ∈ Y. From the definition of
conditional expectation and linearity, we obtain for any G ∈ G

E[YE[X
∣∣ G]1G] = ∑

y∈Y
yE[1G∩Ey E[X

∣∣ G]] = ∑
y∈Y

yE[X1G∩Ey ] = E[X ∑
y∈Y

y1G∩Ey ] = E[XY1G].

Conditional Jensen’s inequality applied to convex function || : R→R+, we get
∣∣E[X

∣∣ G]∣∣⩽E[|X|
∣∣G].

Therefore,

E[|Y|
∣∣E[X

∣∣ G]∣∣] = ∑
y∈Y

|y|E[
∣∣E[X

∣∣ G]∣∣1Ey ]⩽ ∑
y∈Y

|y|E[|X|1Ey ] = E |XY| .

6. L2-projection: We define L2(G) ≜
{

ζ a G measurable random variable : Eζ2 < ∞
}

. From the con-
ditional Jensen’s inequality applied to convex function ()2 : R → R+, we get that E(E[X

∣∣ G])2 ⩽
E[X2

∣∣ G]. Since X ∈ L2, it follows that X2 ∈ L1 and hence E[X | G] ∈ L2. It follows that ζ∗ ≜
E[X

∣∣ G] ∈ L2(G) from the definition of conditional expectation.

We first show that X − ζ∗ is uncorrelated with all ζ ∈ L2(G). Towards this end, we let ζ ∈ L2(G)
and observe that

E[(X − ζ∗)ζ] = E[ζX]− E[ζE[X
∣∣ G]] = E[ζX]− E[E[ζX

∣∣ G]] = 0.

The above equality follows from the linearity of expectation, the G-measurability of ζ, and the
definition of conditional expectation. Since ζ∗ ∈ L2(G), we have (ζ − ζ∗) ∈ L2(G). Therefore,
E[(X − ζ∗)(ζ − ζ∗)] = 0. For any ζ ∈ L2(G), we can write from the linearity of expectation

E(X − ζ)2 = E(X − ζ∗)2 + E(ζ − ζ∗)2 − 2E(X − ζ∗)(ζ − ζ∗)⩾ E(X − ζ∗)2.
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7. tower property: Measurability follows from the definition of conditional expectation, since E[X
∣∣H]

is H measurable. Integrability follows from the application of conditional Jensen’s inequality to
convex function || : R → R+ to get

∣∣E[X
∣∣H]

∣∣⩽ E[|X|
∣∣H], which implies E

∣∣E[X
∣∣H]

∣∣⩽ E |X|<
∞. Orthogonality follows from the definition of conditional expectation, since for any H ∈H⊆ G,
we have

E[E[E[X | G] |H]1H ] = E[E[X
∣∣ G]1H ] = E[X1H ] = E[E[X

∣∣H]1H ].

8. irrelevance of independent information: Measurability follows from the definition of conditional
expectation and the definition of σ(G,H). Since E[X

∣∣ G] is G-measurable, it is σ(G,H) measurable.
Integrability follows from the conditional Jensen’s inequality applied to convex function || : R →
R+ to get

∣∣E[X
∣∣ G]∣∣⩽ E[|X|

∣∣ G], which implies that E
∣∣E[X

∣∣ G]∣∣⩽ E |X| < ∞.
Orthogonality follows from the fact that it suffices to show for events A = G ∩ H ∈ σ(G,H) where
G ∈ G and H ∈H. In this case,

E[E[X
∣∣ G]1G∩H ] = E[E[X

∣∣ G]1G1H ] = E[E[X
∣∣ G]1G]E[1H ] = E[X1G]E[1H ] = E[X1G∩H ].

Example 1.10 (Conditioning on simple random variables). Let X and Y be random variables de-
fined on the probability space (Ω,F, P), where Y = ∑y∈Y y1Ey is simple with finite Y, Ey ≜Y−1 {y} ∈
F for all y ∈ Y are mutually disjoint, and py ≜ P(Ey) > 0 for all y ∈ Y. Then, we observe that

E[X|Y] = ∑
y∈Y

E[X | Ey]1Ey a.s.

To show this, we will use the almost sure uniqueness of conditional expectation that satisfies three
properties in the definition. For measurability, we observe that σ(Y) = σ(Ey : y ∈ Y), and RHS is a
simple σ(Y)-measurable random variable. For integrability, we observe that

E

∣∣∣∣∣ ∑y∈YE[X | Ey]1Ey

∣∣∣∣∣⩽ ∑
y∈Y

|E[X | Y]|P(Ey).

Thus, integrability follows from the finiteness of
∣∣E[X | Ey]

∣∣. For orthogonality, we observe that any
G ∈ σ(Y) =∪y∈FEy for some finite subset F ⊆ Y. Further, we observe that E[X1Ey ] =E[X | Ey]P(Ey).
Therefore, we have

E[∑
z∈F

∑
y∈Y

E[X | Ey]1Ey1Ez ] = E[∑
z∈F

E[X | Ez]1Ez ] = E[X1G].

Example 1.11 (Conditioning on simple random variables). Consider two random variables X,Y
defined on the same probability space (Ω,F, P), where Y is a simple random variable such that
Y⊆ R is finite alphabet, Ey ≜ Y−1({y}) ∈ σ(Y) ⊆ F, and py ≜ P(Ey) > 0. Thus, we can write

Y = ∑
y∈Y

y1Ey .

The collection (Ey ∈ F : y ∈ Y) forms a finite partition of the outcome space Ω and generates σ(Y) ={
∪y∈FEy ∈ F : F ⊆ Y

}
. For an event space E⊆ F, we claim

E[X | σ(E,Y)] = ∑
y∈Y

E[X | σ(E, Ey)]1Ey a.s.

We will show this by uniqueness of conditional expectation that satisfies the following three prop-
erties. First, we verify that RHS is σ(E,Y) measurable, which follows from the definition since
E[X | σ(E, Ey)] ∈ σ(E, Ey)⊆ σ(E,Y). Second, it follows from the triangular and conditional Jensen’s
inequality, that

E

∣∣∣∣∣ ∑y∈YE[X | σ(E, Ey)]1Ey

∣∣∣∣∣⩽ ∑
y∈Y

E[E[|X|1Ey | σ(E, Ey)]]⩽ E |X| .

It suffices to show that for any A ∈ E and z ∈ Y, we have E[∑y∈Y E[X | σ(E, Ey)]1Ey1A1Ez ] =

E[X1A1Ez ]. To this end, we observe that LHS of above equation is equal to

E[E[X1A∩Ez | σ(E, Ez)]] = E[X1A∩Ez ].
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