Lecture-04: Stochastic Processes

1 Stochastic Processes

Definition 1.1. For an arbitrary index set T and a real valued function x € R”, the projection operator
7 : RT — R is defined as 7;(x) £ x; for any x € RT.

Remark 1. Recall that 7'Ct_1(—oo,x] = XSET
is, we can write n[l(—oo,xt] = (—o00,x¢] X

(—o0,x5] where x; = x for s = t and x; = oo for all s # f. That

seTsAt R for any x; € R.

Definition 1.2 (Random process). Let ((),F, P) be a probability space. For an arbitrary index set T and
state space X C R, amap X : Q — X7 is called a random process if the projections X; : Q — X defined

by X;(w) £ (71 0 X)(w) are random variables on the given probability space. For each outcome w € Q,
we have a function X(w) € X7 called the sample path or the sample function of the process X.

Remark 2. A random process X defined on probability space (Q),F, P) with index set T and state space
X C IR, can be thought of as

(@ amap X: QO x T =X,

(b) amap X: T — X, i.e. a collection of random variables X; : QO — X for each time t € T,

(c) amap X :Q — X7, i.e. a collection of sample functions X (w) € X for each random outcome w € Q.

1.1 Classification

State space X can be countable or uncountable, corresponding to discrete or continuous valued process.
If the index set T is countable, the stochastic process is called discrete-time stochastic process or random
sequence. When the index set T is uncountable, it is called continuous-time stochastic process. The
index set T doesn’t have to be time, if the index set is space, and then the stochastic process is spatial
process. When T = R" x [0,00), stochastic process X is a spatio-temporal process.

1.2 Measurability

Definition 1.3. A random map X : Q — XT defined on the probability space (Q,J,P) is called a J-
measurable random process, if the projections X; £ 7; o X are F-measurable random variables for all
teT.

Remark 3. A random process X : QO — X is F-measurable, if the set of outcomes Ax, (x;) £ X; (o0, x¢] €
Fforallt € T and x; € R.

Definition 1.4. The event space generated by a random process X : Q) — XT defined on a probability
space ((),F,P) is given by
c(X) 2 0(Ax,(x):t€ T,x €R).

Definition 1.5. For a random process X : () — XT defined on the probability space (Q,F,P), we define
the projection of X onto components S C T as the random vector Xs : Q — X%, where X5 = (Xs:s € S).

Remark 4. The F-measurability of process X implies that for any countable set S C T, we have Ax, (xs) =
NsesAx, (xs) € F for xg € X5.

Definition 1.6. We can define Ax(x) = NyerAx, (x¢) = {w € Q: (714 0 X)(w) < 4(x)} for any x € RT.

Remark 5. However, Ax(x) is guaranteed to be an event only when S £ {t € T : 7r;(x) < oo} is a count-
able set. In this case,

Ax(x) = NterAx, (x1) = NsesAx, (xs) = Axs(xs) € F.



Remark 6. For any finite subset S C T and real vector x € RT such that x; = o for any t ¢ S, we define a
set

B(x) £ {3/ eR":y < xt} = X (—09,x1] = X (—00,x5] X R = Nyer7t; }(—00,xy].
teT seS t¢S

The measurability of the random process X implies that for any such set B(x), we have

Ax(x) = X1 (B(x)) = Ner(X Loty 1) (—o0,x¢] = NierX; 1 (—00,x¢] = Nyes X5 L (—00,x5] € F.

Example 1.7 (Bernoulli sequence). Consider a sample space {H,T}N. We define a mapping X :
Q— {0,1}]N such that Xy (w) = 1yy)(wn) = Lyy,—py- The map X is an F-measurable random
sequence, if each X, : O — {0,1} is a bi-variate F-measurable random variable on the probability
space (Q),F,P). Therefore, the event space F must contain the event space generated by events

En 2 {we: Xy(w) =1} ={w e Q:w, = H} € F. Thatis,

0(X)=0(E,:n€N).

1.3 Distribution

Definition 1.8. For a random process X : QO — X7 defined on the probability space (Q,F, P), we define
a finite dimensional distribution F_ : RS — [0,1] for a finite S C T by

Fx,(xs) = P(Ax,(xs)) = P(NsesAx, (%)), xs € R°.

Example 1.9. Consider a probability space (Q),F,P) defined by the sample space Q = {H,T}¥,
the event space ¥ £ o(E, : n € N) where E, = {w € Q:wy, = H}, and the probability measure
P:3 — [0,1] defined by

P(NjerE;) = pm, for all finite F C IN.

Let X: Q) — {0, 1}]N defined as X, (w) = 1, (w) for all outcomes w € Q) and n € IN. For this random
sequence, we can obtain the finite dimensional distribution Fyg : RS — [0,1] for any finite S C T and

xeER%intermsof UL {i€S:x;<0}and VE{i€S:x;€[0,1)},as

1, uuv =09,
Fx,(x)={(1-p)Vl, U=0,V+#Q, (1)
0, U+Q.

To define a measure on a random process, we can either put a measure on sample paths (X(w) €
XT: w € Q), or equip the collection of random variables (X; € X : t € T) with a joint measure. Either
way, we are interested in identifying the joint distribution F : RT — [0,1]. To this end, for any x € RT,
we need to know

Fx(x)&P (ﬂ{w €0: Xy (w) < xt}> =P(( X; }(—o0,x;]) =Po X 1 X (—00,x].

teT teT teT

First of all, we don’t know whether Ax(x) is an event when T is uncountable. Though, we can verify
that Ax(x) € J for x € RT such that {f € T: x; < o} is countable. Second, even for a simple indepen-
dent process with countably infinite T, any function of the above form would be zero if x; is finite for all
t € T. That is, for any finite set S C T, we focus on the events Ag(xg) and their probabilities. However,
these are precisely the finite dimensional distributions. Set of all finite dimensional distributions of a
stochastic process X : QO — X' characterizes its distribution completely. Simpler characterizations of a
stochastic process X are in terms of its moments. That is, the first moment such as mean, and the second
moment such as correlations and covariance functions.

my(t) 2 EX;, Rx(t,s) 2 EX;:Xs, Cx(t,8) EE(Xy — mx(t))(Xs — mx(s)).



Example 1.10. Consider a probability space (), F,P) defined by the sample space Q) = {H, T}N
and the event space F £ o'(E, : n € N) where E, = {w € Q: w, = H}. Let X : Q — {0,1}" defined
as X, (w) = 1g, (w) for all outcomes w € Q) and n € IN. For this random sequence, if we are given
the finite dimensional distribution Fx, : RS — [0,1] for any finite S C T and x € RS in terms of U £
{ieS:x;<0}and V£ {i€S:x; €[0,1)}, as defined in Eq. (I). Then, we can find the probability
measure P : F — [0,1] is given by

P(NjerE;) = p!Fl, for all finite F C .

Let g = (1 — p), then the probability of observing m heads and r tails is given by p™g". We can easily
compute the mean, the auto-correlation, and the auto-covariance functions for this independent
Bernoulli process

mx(n) =EX, =p, Rx(m,n) = EXy X, = EXyEX, = p?, Cy(m,n) =0.

1.4 Independence

Definition 1.11. A stochastic process X : (2 — X7 is said to be independent if for all finite subsets S C T,
the finite collection of events {{Xs < x5} : s € S} are independent. That is, we have

FXS (xS) = P(ﬁses {Xs < xs}) = HP{XS < xs} = HFXS(XS)'
seS seS

Remark 7. Independence of a random process is equivalent to factorization of any finite dimensional
distribution function into product of individual marginal distribution functions.

Example 1.12. Consider a probability space (2, F, P) defined by the sample space Q) = {H,T}N,
the event space F = o(E, : n € N) where E, = {w € Q:w, = H}, and the probability measure
P:3F — [0,1] defined by

P(NjepE;) = pm, for all finite F C IN.

Then, we observe that the random sequence X : Q — {0,1} defined by X, (w) £ 1, (w) for all
outcomes w € (2 and n € N, is independent.

Definition 1.13. Two stochastic processes X : QO — X1,Y : Q) — Y™2 are independent, if the correspond-
ing event spaces o(X),o(Y) are independent. That is, for any x € RS1,y € R*2 for finite S; C T1,S, C T»,
the events Ag, (x) = Nyeg, X5 1(—00,x5] and Bs, () = Nses, Yy ' (—o0,ys] are independent. That is, the
joint finite dimensional distribution of X and Y factorizes, and

P(As, (x) N Bs, (y)) = P(As, (x))P(Bs, (y)) = Fx,, (x)Fys, (y), x € R,y € R™.

1.5 Filtration
Let (Q), 7, P) be a probability space.

Definition 1.14. A net of event spaces denoted F, = (F; C F: t € T) is called a filtration if the index set
T is totally ordered and the net is nondecreasing, that is s C J; for all s < t.

Definition 1.15. Consider a real-valued random process X indexed by the ordered set T on the prob-
ability space (Q,F,P). The process X is called adapted to the filtration F,, if for each t € T, we have
o(X;) C Jror X; 1 (—o0,x] € T for each x € R,

We will consider any random process X : Q) — XT defined on this probability space with state space
X C R and ordered index set T C R considered as time.



Definition 1.16. For the random process X : QO — X7, we define the event space generated by all random
variables until time t as G¢ £ 0'(X;,s < t).

Remark 8. The collection of event spaces Go = (G : t € T) is a filtration.

Definition 1.17. The natural filtration associated with a random process X : Q — X7 is given by G =
(G¢:t € T) where §; 2 7(X,,s < t).

Remark 9. Any random process X is adapted to its natural filtration.

Remark 10. For a random sequence X : () — XN the natural filtration is a sequence Go = (G, CF:n€N)
of event spaces G, £ o(Xy,...,Xy,) foralln € N.

Example 1.18. For a random walk S : Q — RN with step size sequence X : Q — RN defined by
Sy £ Y"1 X; for all n € N, the natural filtration of the random walk is identical to that of the step
size sequence. Thatis, 0(Sy,...,S,) = 0(Xy,...,Xy) for all n € N. This follows from the fact that for

alln € N, we can can write S; = 25:1 Xjand X; = S; — S;_1 forall j € [n]. That is, there is a bijection
between (X,...,Xy) and (Sy,...,S,).

Remark 11. If the random sequence X is independent, then the random sequence (X, :j € IN) is
independent of the event space o(Xj, ..., Xy).

Remark 12. Let X : QO — XT be an independent process with the associated natural filtration Ge = (G;
t € T) for an ordered index set T. Then for any t > s and events A € G,, the random variable X; is
independent of the event A. This is just a fancy way of saying X; is independent of (X, u <s). Hence,
for any random variable Y € G5, we have

E[X:Y|9s] = YE[X}].

1.6 Progressive measurability

For continuous-time processes, where the time ¢ ranges over an arbitrary index set T C IR, the property
of being adapted is too weak to be helpful in many situations. Instead, we need to consider measura-
bility of the process as amap X : T x () — IR. To this end, we first define measurability on the product
spaces.

Definition 1.19. Let (S,8) and (V,V) be two measurable spaces. The product measurable space denoted
(SxV,8®V) is defined as
SRVE20(AxB:AcS8,BeV).

Definition 1.20. For a product measurable space (S x V,8 ® V), we define projections 7s(A x B) = A
and 7ty (A x B) =Bforany AXx BES® V.

Definition 1.21. For a random process X : T x () — X and any time s € T, we can define a stopped
process X° : T x () = X such that X7 £ X;ps forallt e T.

Definition 1.22. A process X : T x (2 — R adapted to filtration J, is progressive or progressively
measurable, if stopped process X® is B((—o0,s]) ® F; measurable for all s € T.

Remark 13. Since 7t o (X~ (—o00,x] N ({t} x Q)) = X; }(—00,x] € Ty, every progressively measurable
process is adapted and jointly measurable.

Lemma 1.23. When T is countable, every adapted process is progressive.

Proof. Tt suffices to show this for countable T = IN. Let X : O — XN be a real valued process adapted to

filtration F,, and X" be a stopped process for m € IN. We observe that the inverse map (X™)~1(—o0,x] £
{(nw):n<m X(n,w) < x}=Uepm({n} x X1 (—00,x]) € B((—00,m]) @ T O

Definition 1.24. A set S C T x Q) is said to be progressive if its indicator function 1g is progressive.
Equivalently, SN (—o0,s] x Q) € B((—o00,s]) @ F forall s € T.

Proposition 1.25. The progressively measurable sets form a o-algebra.



Proof. By definition product event space B((—oo,s]) ® F; is a o-algebra for all s € T. We define the
collection
GE{SCTxO:5SN(—09,5] x Q€ B((—00,5]) ®F; foralls € T}.

We need to show the following three conditions for § to be a o-algebra.
(i) Itis easy toseethat T x Q) € Gsince (T x Q) N ((—o0,5] x Q) = (—00,s] x QA € B((—00,s]) @ F; for
all s € T by definition.
(i) LetS € G, then we will show that 5¢ € G. Let s € T, then using the fact that B((—o0,s]) ® Fs is a o-
algebra, it follows that S° N ((—oo,s] x Q) = (SN (—09,5] X Q)N ((—00,5] x Q) € B((—00,5]) ¥ Fs.
(iii) Let S€ GN,s € T,and S,, N (—o0,5] x O € B((—09,5]) @ T for all n € IN, then it follows from the
distributive property of intersections and the closure of B((—0o9o,s]) ® F; under countable unions,
that UpenSy € G.
O

Proposition 1.26. A stochastic process is progressive iff it is measurable with respect to progressive o-algebra.

Proof. Let X : Q) — XT be a random process adapted to a filtration F,. Let X be progressive and fixs € T
and x € R, then we show that any event generated by the stopped process X® is progressive. Indeed,
we observe that (X*) ™1 (—co,x] N ((—oo,u] x Q) = (X**)~1(—c0,x] € B((—c0,u]) @ F, forallu € T.
Conversely, if we assume that any event generated by X is progressive, then X 1 (—o0,x] N ((—09,s] N
Q) = (X*)1(—o00,x] € B((—00,s]) ® Fs forall s € T and x € R. It follows that X is progressive. O

Proposition 1.27. Every adapted process with right-continuous sample paths is progressively measurable.

Theorem 1.28. Every measurable and adapted process has a progressively measurable modification.



	Stochastic Processes
	Classification
	Measurability
	Distribution
	Independence
	Filtration
	Progressive measurability


