Lecture-06: Strong Markov Property

1 Strong Markov property

We will consider real valued processes $X : \Omega \to X^T$ defined on a probability space (Ω, \mathcal{F}, P) with state space $X \subseteq \mathbb{R}$ and ordered index set $T \subseteq \mathbb{R}$, adapted to its natural filtration by $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in T)$, where $\mathcal{F}_t \triangleq \sigma(X_{s,s} \leq t)$ for all $t \in T$.

Definition 1.1. A process $X : \Omega \to \mathcal{X}^T$ adapted to its natural filtration \mathcal{F}_{\bullet} , is called **Markov** if we have for $t \ge s$

 $\mathbb{E}[\mathbb{1}_{\{X_t \leqslant x\}} \mid \mathcal{F}_s] = \mathbb{E}[\mathbb{1}_{\{X_t \leqslant x\}} \mid \sigma(X_s)].$

Example 1.2. An independent process is trivially Markov, since

$$\mathbb{E}[\mathbb{1}_{\{X_t \leq x\}} \mid \mathcal{F}_s] = \mathbb{E}\mathbb{1}_{\{X_t \leq x\}} = \mathbb{E}[\mathbb{1}_{\{X_t \leq x\}} \mid \sigma(X_s)].$$

Example 1.3. Consider a random walk $S : \Omega \to \mathbb{R}^{\mathbb{N}}$ defined in term of independent step-size sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ as $S_n \triangleq \sum_{i=1}^n X_i$ for all $n \in \mathbb{N}$. The random walk *S* is Markov with respect to its natural filtration \mathcal{F}_{\bullet} . To see this, we take $n \in \mathbb{N}$, denote the distribution function for X_{n+1} as $F_{X_{n+1}} : \mathbb{R} \to [0,1]$, and observe from the independence of X_{n+1} and \mathcal{F}_n that

$$\mathbb{E}[\mathbb{1}_{\{S_{n+1} \leq x\}} \mid \mathcal{F}_n] = F_{X_{n+1}}(x - S_n) = \mathbb{E}[\mathbb{1}_{\{X_{n+1} \leq x - S_n\}} \mid \sigma(S_n)] = \mathbb{E}[\mathbb{1}_{\{S_{n+1} \leq x\}} \mid \sigma(S_n)].$$

Definition 1.4. Let $X : \Omega \to X^T$ be a real valued Markov process adapted to its natural filtration \mathcal{F}_{\bullet} . Let τ be a stopping time with respect to this filtration, then the process X is called **strongly Markov** if for all $x \in \mathbb{R}$ and t > 0, we have

$$\mathbb{E}[\mathbb{1}_{\{X_{t+\tau} \leq x\}} \mid \mathcal{F}_{\tau}] = \mathbb{E}[\mathbb{1}_{\{X_{t+\tau} \leq x\}} \mid \sigma(X_{\tau})]. \tag{1}$$

Exercise 1.5. Consider a random process $X : \Omega \to X^{\mathbb{R}}$ adapted to its natural filtration \mathcal{F}_{\bullet} , a stopping time $\tau : \Omega \to I \subseteq \mathbb{R}$ adapted to \mathcal{F}_{\bullet} and a random variable $Y : \Omega \to \mathbb{R}$ all defined on the same probability space (Ω, \mathcal{F}, P) . If *I* is countable, then show that

$$\mathbb{E}[Y \mid \sigma(X_{\tau})] = \sum_{i \in I} \mathbb{1}_{\{\tau=i\}} \mathbb{E}[Y \mid \sigma(X_i, \{\tau=i\})].$$

From the almost sure uniqueness of conditional expectation, it suffices to show that the right hand side of the above equation is $\sigma(X_{\tau})$ measurable, absolutely integrable, and orthogonal. For orthogonality, one needs to show that for any $A \in \sigma(X_{\tau})$,

$$\mathbb{E}[\mathbb{1}_A Y] = \mathbb{E}[\mathbb{1}_A \sum_{i \in I} \mathbb{1}_{\{\tau=i\}} \mathbb{E}[Y \mid \sigma(X_i, \{\tau=i\})]].$$

Lemma 1.6. Consider a Markov process $X : \Omega \to X^T$ adapted to its natural filtration \mathcal{F}_{\bullet} . and a stopping time τ with respect to \mathcal{F}_{\bullet} . If the stopping time τ is almost surely countable, then the process X is strongly Markov at τ .

Proof. Let $I \subseteq T$ be the countable set such that $P \{ \tau \notin I \} = 0$. We will show that the right hand side of (1) satisfies measurability, integrability, and orthogonality of conditional expectation $\mathbb{E}[\mathbb{1}_{\{X_{t+\tau} \leq x\}} | \mathcal{F}_{\tau}]$, and the result follows from the a.s. uniqueness of conditional expectation.

Measurability: Recall $\sigma(X_{\tau}) \subseteq \sigma(X^{\tau}) \subseteq \mathcal{F}_{\tau}$, and since the conditional expectation $\mathbb{E}[\mathbb{1}_{\{X_{\tau+t} \leq x\}} | \sigma(X_{\tau})]$ is $\sigma(X_{\tau})$ measurable, it is \mathcal{F}_{τ} measurable.

Integrability: Since $0 \leq \mathbb{1}_{\{X_{\tau+t} \leq x\}} \leq 1$, from the monotonicity of the conditional expectation it follows that $0 \leq \mathbb{E}[\mathbb{1}_{\{X_{\tau+t} \leq x\}} \mid \sigma(X_{\tau})] \leq 1$, and hence it is absolutely integrable.

Orthogonality: Fix $A \in \mathcal{F}_{\tau}$. It suffices to show that for all $x \in \mathbb{R}$ and t > 0,

$$\mathbb{E}[\mathbb{1}_A \mathbb{E}[\mathbb{1}_{\{X_{\tau+t} \leqslant x\}} | \sigma(X_{\tau})]] = \mathbb{E}[\mathbb{1}_A \mathbb{1}_{\{X_{\tau+t} \leqslant x\}}].$$

From almost sure countability of τ , we can write $A = \bigcup_{i \in I} A \cap \{\tau = i\}$, where $A \cap \{\tau = i\} \in \mathcal{F}_i$ for all $i \in I$. From the tower property of conditional expectation and \mathcal{F}_i -measurability of $A \cap \{\tau = i\}$,

$$\mathbb{E}[\mathbb{1}_A\mathbb{1}_{\{X_{t+\tau}\leqslant x\}}] = \sum_{i\in I} \mathbb{E}[\mathbb{1}_{A\cap\{X_{t+\tau}\leqslant x\}\cap\{\tau=i\}}] = \sum_{i\in I} \mathbb{E}[\mathbb{E}[\mathbb{1}_{A\cap\{X_{t+i}\leqslant x\}\cap\{\tau=i\}}|\mathcal{F}_i]] = \sum_{i\in I} \mathbb{E}[\mathbb{1}_A\mathbb{1}_{\{\tau=i\}}\mathbb{E}[\mathbb{1}_{\{X_{t+i}\leqslant x\}}|\mathcal{F}_i]]$$

From Markov property of process *X*, we have $\mathbb{E}[\mathbb{1}_{\{X_{t+i} \leq x\}} | \mathcal{F}_i] = \mathbb{E}[\mathbb{1}_{\{X_{t+i} \leq x\}} | \sigma(X_i)]$. This result together with Exercise 1.5, we have

$$\sum_{i\in I} \mathbb{1}_{\{\tau=i\}} \mathbb{E}[\mathbb{1}_{\{X_{t+i}\leqslant x\}} \mid \sigma(X_i)] = \sum_{i\in I} \mathbb{1}_{\{\tau=i\}} \mathbb{E}[\mathbb{1}_{\{X_{t+\tau}\leqslant x\}} \mid \sigma(X_i)] = \mathbb{E}[\mathbb{1}_{\{X_{t+\tau}\leqslant x\}} \mid \sigma(X_{\tau})]$$

The result follows from the linearity of expectation.

Corollary 1.7. Any Markov process on countable index set T is strongly Markov.

Proof. For a countable index set *T*, any associated stopping time is countable.

Corollary 1.8. Let τ be a stopping time with respect to the natural filtration \mathcal{F}_{\bullet} of an i.i.d. random sequence X. Then $(X_{\tau+1}, \ldots, X_{\tau+n})$ is independent of \mathcal{F}_{τ} for each $n \in N$ and identically distributed to (X_1, \ldots, X_n) .

Proof. Let $F : \mathbb{R} \to [0,1]$ be the common distribution for the *i.i.d.* sequence X, then it suffices to show that

$$\mathbb{E}\left[\prod_{i=1}^{n}\mathbb{1}_{\{X_{\tau+i}\leqslant x_i\}} \mid \mathcal{F}_{\tau}\right] = \prod_{i=1}^{n}F(x_i), \quad x\in\mathbb{R}^{n}.$$

Since RHS of the above equation is a constant in [0,1], the measurability and integrability are clear. To show orthogonality, we fix $A \in \mathcal{F}_{\tau}$ and we need to show that

$$\mathbb{E}[\mathbb{1}_A \prod_{i=1}^n F(x_i)] = \mathbb{E}[\mathbb{1}_A \prod_{i=1}^n \mathbb{1}_{\{X_{\tau+i} \leq x_i\}}].$$

We can write $\mathbb{1}_A = \sum_{m \in \mathbb{N}} \mathbb{1}_A \mathbb{1}_{\{\tau=m\}}$ where $A \cap \{\tau = m\} \in \mathcal{F}_m$. Therefore, from the linearity of expectation, the tower property of conditional expectation, and from X being *i.i.d.*, we can write

$$\mathbb{E}[\mathbb{1}_{A}\prod_{i=1}^{n}\mathbb{1}_{\{X_{\tau+i}\leqslant x_i\}}] = \sum_{m\in\mathbb{N}}\mathbb{E}[\mathbb{1}_{A}\mathbb{1}_{\{\tau=m\}}\mathbb{E}[\prod_{i=1}^{n}\mathbb{1}_{\{X_{m+i}\leqslant x_i\}} \mid \mathcal{F}_{m}]] = \mathbb{E}[\mathbb{1}_{A}\sum_{m\in\mathbb{N}}\mathbb{1}_{\{\tau=m\}}\prod_{i=1}^{n}F(x_i)] = \mathbb{E}[\mathbb{1}_{A}\prod_{i=1}^{n}F(x_i)].$$

Theorem 1.9. Let $X : \Omega \to X^T$ be any real-valued Markov process adapted to its natural filtration \mathcal{F}_{\bullet} , with rightcontinuous sample paths. If the map $t \mapsto \mathbb{E}[f(X_s) | \sigma(X_t)]$ is right-continuous for each bounded continuous function f, then X is strongly Markov.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function, $t \ge 0$, and τ be an \mathcal{F}_{\bullet} -adapted stopping time. It suffices to show that $f(X_t)$ satisfies the strong Markov property. For each $m \in \mathbb{N}$, consider the intervals $I_{k,m} \triangleq ((k-1)2^{-m}, k2^{-m}]$ for all $k \in [2^{2m}]$, and define

$$\tau_m \triangleq \sum_{k=1}^{2^{2m}} k 2^{-m} \mathbb{1}_{\{\tau \in I_{k,m}\}}.$$

We observe that τ_m is adapted to \mathcal{F}_{\bullet} and takes countable values for each m. Further, we have $\tau \mathbb{1}_{\{\tau \leq 2^m\}} \leq \tau_m \leq 2^m$ and τ_m is decreasing in m. From a.s. finiteness of stopping time τ , for almost all outcomes $\omega \in \Omega$

there exists an $m_0(\omega) \in \mathbb{N}$ such that $\tau \leq \tau_m$. Hence, $\tau_m \downarrow \tau$ almost surely. Since $\tau \leq \tau_m$, it follows that $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau_m}$. From the strong Markov property for the Markov process *X* at countably valued stopping times, we have

$$\mathbb{E}[f(X_{\tau_m+t}) \mid \mathcal{F}_{\tau_m}] = \mathbb{E}[f(X_{\tau_m+t}) \mid \sigma(X_{\tau_m})].$$

From the orthogonality property of conditional expectation, it follows that for each $A \in \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau_m}$, we have

$$\mathbb{E}[\mathbb{1}_A f(X_{\tau_m+t})] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[f(X_{\tau_m+t}) | \sigma(X_{\tau_m})]]$$

Taking limit as $\tau_m \downarrow \tau$ on both sides and applying dominated convergence theorem, we get

$$\mathbb{E}[\mathbb{1}_A f(X_{\tau+t})] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[f(X_{\tau+t}) | \sigma(X_{\tau})]]$$

Corollary 1.10. The counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ associated with the Poisson point process $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$, satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map $t \mapsto \mathbb{E}_{N_t} f(N_s)$ for $s \ge t$ and any bounded continuous function f, which holds from the stationary and independent increment property of Poisson process N_t . In particular, $N_s - N_t$ is a Poisson random variable with mean $\Lambda(t,s]$ and independent of N_t , and hence

$$\mathbb{E}_{N_t}f(N_s) = \mathbb{E}_{N_t}f(N_s - N_t + N_t) = \sum_{k \in \mathbb{Z}_+} e^{-\Lambda(t,s)} \frac{\Lambda(t,s)^k}{k!} f(N_t + k)$$

The continuity of the map follows from the right continuity of N_t , boundedness and continuity of f, continuity of $\Lambda(t, t + s]$, and bounded convergence theorem.

Corollary 1.11. The standard Brownian motion $B: \Omega \to \mathbb{R}^{\mathbb{R}_+}$ satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map $t \mapsto \mathbb{E}_{B_t} f(B_s)$ for $s \ge t$ and any bounded continuous function f, which holds from the stationary and independent increment property of Brownian motion B_t . In particular, $B_s - B_t$ is a Gaussian random variable with zero mean and variance s, independent of B_t . Therefore,

$$\mathbb{E}_{B_t}f(B_s) = \mathbb{E}_{B_t}f(B_s - B_t + B_t) = \int_{x \in \mathbb{R}} e^{-\frac{x^2}{2(s-t)}}f(B_t + x)dx.$$

The continuity of the map follows from the continuity of B_t , boundedness and continuity of f, and bounded convergence theorem.

Definition 1.12. Let $S : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ be a one-dimensional random walk associated with an *i.i.d.* positive step-size sequence $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$. We define the associated **counting process** $N : \Omega \to \mathbb{Z}^{\mathbb{R}_+}_+$ such that $N_t \triangleq \sum_{n \in \mathbb{N}} \mathbb{1}_{\{S_n \leq t\}}$ is the number of steps in time (0, t].

Proposition 1.13. Let $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ be the counting process associated with a random walk $S : \Omega \to \mathbb{R}_+^{\mathbb{N}}$, and \mathcal{G}_{\bullet} be the natural filtration for the positive step size sequence $X : \Omega \to \mathbb{R}_+^{\mathbb{N}}$. Then $(N_{S_m+t_1} - N_{S_m}, \ldots, N_{S_m+t_n} - N_{S_m})$ is independent of \mathcal{G}_m and has the same joint distribution as $(N_{t_1}, \ldots, N_{t_n})$.

Proof. Recall that $\{N_t = k\} = \{S_k \leq t, S_{k+1} > t\}$, and hence we can write

$$\{N_{S_m+t} - N_{S_m} = k\} = \{S_{m+k} \leqslant S_m + t, S_{m+k+1} > S_m + t\}.$$

Since $S_{m+k} - S_m$ has same distribution as S_k for all $k \ge 0$ and is independent of \mathfrak{G}_m , we can write

$$P(\bigcap_{i=1}^{n} \{N_{S_m+t_i} - N_{S_m} = k_i\} | \mathcal{G}_m) = P(\bigcap_{i=1}^{n} \{S_{k_i-m} \leq t_1, S_{k_i-m} > t_i\}) = P(\bigcap_{i=1}^{n} \{N_{t_i} = k_i\}).$$

3