Lecture-06: Strong Markov Property

1 Strong Markov property

We will consider real valued processes X : QO — X' defined on a probability space (Q,F, P) with state
space X C R and ordered index set T C IR, adapted to its natural filtration by Fo = (F; : t € T), where
Fi 2 0(Xs,s<t)forallteT.

Definition 1.1. A process X : QO — XT adapted to its natural filtration F,, is called Markov if we have
fort>s

E[Lix,<xy | Fs] = E[l{x,<xy | 0(X6)]-

Example 1.2. An independent process is trivially Markov, since
E[Lix,<x | Fs] = Elix,<xy = E[l{x,<x} | 0(X5)]-

Example 1.3. Consider a random walk S : QO — RN defined in term of independent step-size sequence
X:Q—-RNasS, £y" X, forall n € N. The random walk S is Markov with respect to its natural
filtration J,. To see this, we take n € IN, denote the distribution function for X, as Fx, , : R — [0,1],
and observe from the independence of X, and F, that

E[ls,  <xy | Fnl = Fx, oy (x = Sn) = E[Lix,  <x—s,3 | 0(Sn)] =E[lgs,  <x} | 0(Sn)]-

Definition 1.4. Let X : ) — X7 be a real valued Markov process adapted to its natural filtration F,. Let
T be a stopping time with respect to this filtration, then the process X is called strongly Markov if for
all x e Rand t > 0, we have

E[lix,, . <x | o = E[lix,, . <x | (X)) €))

Exercise 1.5. Consider a random process X : Q) — XR adapted to its natural filtration J,, a stop-
ping time 7: () — I C R adapted to F, and a random variable Y : (3 — R all defined on the same
probability space (Q2,F,P). If I is countable, then show that

E[Y | 0(Xc)] = Z%Il{r:i}]E[Y | o(Xi, {7 =i})].

From the almost sure uniqueness of conditional expectation, it suffices to show that the right
hand side of the above equation is o(X;) measurable, absolutely integrable, and orthogonal.
For orthogonality, one needs to show that for any A € 0(X<),

E[1,Y] = E[IAEJI{T:@]E[Y | o (X, {T=1i})]].

Lemma 1.6. Consider a Markov process X : Q — XT adapted to its natural filtration Fs. and a stopping time T
with respect to F,. If the stopping time T is almost surely countable, then the process X is strongly Markov at T.

Proof. Let I C T be the countable set such that P {1 ¢ I} = 0. We will show that the right hand side of
satisfies measurability, integrability, and orthogonality of conditional expectation E[1(x,, <} | F7J, and
the result follows from the a.s. uniqueness of conditional expectation.



Measurability: Recall 0(X7) C ¢(X") C Jr, and since the conditional expectation E[L;x <} | 0(X7)]
is 0(X7) measurable, it is F; measurable.

Integrability: Since 0 < 1(x_,,<y} <1, from the monotonicity of the conditional expectation it follows
that 0 <E[lyx, . ,<x) | 0(Xr)] <1, and hence it is absolutely integrable.

Orthogonality: Fix A € F¢. It suffices to show that for all x € R and t > 0,
E[IAE[1x, < |0(Xo)]] =E[1alx,, <xl-

From almost sure countability of T, we can write A = U;e;AN{t =i}, where AN {t =i} € F; for
all i € I. From the tower property of conditional expectation and F;-measurability of AN {1t =i},

E[LaLix,, <x)) = L ELanx c<opnfr=it) = LEELan(x,, scapnie=ip [Tl = L ELaL -y E[l(x, <xy|Fi]]-

i€l i€l iel
From Markov property of process X, we have E[1yx, <. | Fi] = E[l{x,,,<x} | 0(X;)]. This result
together with Exercise[1.5, we have
Zﬂ{r N E[Lix,, < | 0(X Zl{f NE[Lix, <y |0(X)] =E[lix,, .<x | 0(X2)]-

The result follows from the linearity of expectation.

Corollary 1.7. Any Markov process on countable index set T is strongly Markov.
Proof. For a countable index set T, any associated stopping time is countable. O

Corollary 1.8. Let T be a stopping time with respect to the natural filtration Fo of an ii.d. random sequence X.
Then (X¢41,- .., Xc4n) is independent of Fy for each n € N and identically distributed to (Xy,..., Xn).

Proof. Let F: R — [0,1] be the common distribution for the i.i.d. sequence X, then it suffices to show that

n n
E 1—‘][]1{Xr+l\x1} | g"r = HF(xl)’ xe Rn‘
i= =

Since RHS of the above equation is a constant in [0,1], the measurability and integrability are clear. To
show orthogonality, we fix A € F; and we need to show that

E[14] [F(x)] =ELa] [1ix,  <xy)-
i=1 i=1

We can write 14 =Y e Lal{c—y) Where AN {7 =m} € Fy,. Therefore, from the linearity of expecta-
tion, the tower property of conditional expectation, and from X being i.i.d. , we can write

ElA][1ix e = 2 Ellale m}]EHI{xmﬂ@} | Fwl] =E[la ) 1{ro m}HF =E[LA] JF(x)]
i=1 i=1
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Theorem 1.9. Let X : Q — X be any real-valued Markov process adapted to its natural filtration Fo, with right-
continuous sample paths. If the map t — E[f(Xs) | 0(X¢)] is right-continuous for each bounded continuous
function f, then X is strongly Markov.

Proof. Let f : R — R be a bounded continuous function, f >> 0, and 7 be an F,-adapted stopping time. It
suffices to show that f(X;) satisfies the strong Markov property. For each m € IN, consider the intervals
L = ((k—1)27™,k27™] for all k € [22™], and define

22m

A _
Tm :kX:lkZ m]l{TEIk,m}'

We observe that 7, is adapted to F, and takes countable values for each m. Further, we have 71 <pm} <
T < 2" and T, is decreasing in m. From a.s. finiteness of stopping time 7, for almost all outcomes w € ()



there exists an my(w) € IN such that T < 1,,. Hence, 7, | T almost surely. Since T < Ty, it follows that
Fr € F,. From the strong Markov property for the Markov process X at countably valued stopping
times, we have

Elf (Xo,+4) | 5] = Blf (Xo,44) | 0(X, )]

From the orthogonality property of conditional expectation, it follows that for each A € 3 C J,,, we
have

E[14f(Xz,+1)] = E[LAE[f (Xz,+1)[0(X, )]]-

Taking limit as T, | T on both sides and applying dominated convergence theorem, we get

E[14f(Xeit)] = E[LAE[f (Xe 1) |0 (Xo)]].
O

Corollary 1.10. The counting process N : () — ZE* associated with the Poisson point process S : Q — RN,
satisfies the strong Markouv property.

Proof. Tt suffices to check the right continuity of the map t — Ey,f(Ns) for s > t and any bounded
continuous function f, which holds from the stationary and independent increment property of Poisson
process N;. In particular, Ny — N; is a Poisson random variable with mean A(t,s] and independent of
N;, and hence

En,f(N:) =En,f(Ns = Ny + Np) = ) e At %’S]kﬂNt +k).

|
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The continuity of the map follows from the right continuity of N, boundedness and continuity of f,
continuity of A(t,t+ s], and bounded convergence theorem. O

Corollary 1.11. The standard Brownian motion B : Q) — R®+ satisfies the strong Markov property.

Proof. Tt suffices to check the right continuity of the map f +— Egp, f(B;) for s > t and any bounded con-
tinuous function f, which holds from the stationary and independent increment property of Brownian
motion B;. In particular, Bs — B; is a Gaussian random variable with zero mean and variance s, inde-
pendent of B;. Therefore,

2

Ep, f(Bs) = Ep,f(Bs — Bt + By) = /eRe’Wf(Bt + x)dx.
X

The continuity of the map follows from the continuity of B;, boundedness and continuity of f, and
bounded convergence theorem. O

Definition 1.12. Let S: Q — RY be a one-dimensional random walk associated with an i.i.d. positive
step-size sequence X : O — RYY. We define the associated counting process N : Q) — ZE* such that
N =Y ,en 1(s,<s) is the number of steps in time (0, ¢].

Proposition 1.13. Let N: () — ZE* be the counting process associated with a random walk S : Q — RN, and
Se be the natural filtration for the positive step size sequence X : Q — RY. Then (Ns, ¢, — Ns,,,---,Ns,,+t, —
Ng, ) is independent of Gy, and has the same joint distribution as (Ny,,..., Ny, )

nle

Proof. Recall that {N; =k} = {S; <t,S;1 > t}, and hence we can write
{Ns, +t = Ns,, =k} = {Sux < Sm + £, Smik1 > Sm+t}.

Since S, 1 — S has same distribution as Sy for all k > 0 and is independent of G,,;, we can write

n n n

P({) {Ns,+t, = Ns,, =ki} 1Sm) = P(() {Sk,—m < t1,Sk,—m > ti}) = P(( ) {Nt, = k;}).
i=1 i=1 i=1
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