
Lecture-06: Strong Markov Property

1 Strong Markov property

We will consider real valued processes X : Ω → XT defined on a probability space (Ω,F, P) with state
space X ⊆ R and ordered index set T ⊆ R, adapted to its natural filtration by F• = (Ft : t ∈ T), where
Ft ≜ σ(Xs, s ⩽ t) for all t ∈ T.

Definition 1.1. A process X : Ω → XT adapted to its natural filtration F•, is called Markov if we have
for t ⩾ s

E[1{Xt⩽x} | Fs] = E[1{Xt⩽x} | σ(Xs)].

Example 1.2. An independent process is trivially Markov, since

E[1{Xt⩽x} | Fs] = E1{Xt⩽x} = E[1{Xt⩽x} | σ(Xs)].

Example 1.3. Consider a random walk S : Ω → RN defined in term of independent step-size sequence
X : Ω → RN as Sn ≜ ∑n

i=1 Xi for all n ∈ N. The random walk S is Markov with respect to its natural
filtration F•. To see this, we take n ∈ N, denote the distribution function for Xn+1 as FXn+1 : R → [0,1],
and observe from the independence of Xn+1 and Fn that

E[1{Sn+1⩽x} | Fn] = FXn+1(x − Sn) = E[1{Xn+1⩽x−Sn} | σ(Sn)] = E[1{Sn+1⩽x} | σ(Sn)].

Definition 1.4. Let X : Ω → XT be a real valued Markov process adapted to its natural filtration F•. Let
τ be a stopping time with respect to this filtration, then the process X is called strongly Markov if for
all x ∈ R and t > 0, we have

E[1{Xt+τ⩽x} | Fτ ] = E[1{Xt+τ⩽x} | σ(Xτ)]. (1)

Exercise 1.5. Consider a random process X : Ω → XR adapted to its natural filtration F•, a stop-
ping time τ : Ω → I ⊆ R adapted to F• and a random variable Y : Ω → R all defined on the same
probability space (Ω,F, P). If I is countable, then show that

E[Y | σ(Xτ)] = ∑
i∈I

1{τ=i}E[Y | σ(Xi,{τ = i})].

From the almost sure uniqueness of conditional expectation, it suffices to show that the right
hand side of the above equation is σ(Xτ) measurable, absolutely integrable, and orthogonal.
For orthogonality, one needs to show that for any A ∈ σ(Xτ),

E[1AY] = E[1A ∑
i∈I

1{τ=i}E[Y | σ(Xi,{τ = i})]].

Lemma 1.6. Consider a Markov process X : Ω → XT adapted to its natural filtration F•. and a stopping time τ
with respect to F•. If the stopping time τ is almost surely countable, then the process X is strongly Markov at τ.

Proof. Let I ⊆ T be the countable set such that P{τ /∈ I}= 0. We will show that the right hand side of (1)
satisfies measurability, integrability, and orthogonality of conditional expectation E[1{Xt+τ⩽x} | Fτ ], and
the result follows from the a.s. uniqueness of conditional expectation.
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Measurability: Recall σ(Xτ) ⊆ σ(Xτ) ⊆ Fτ , and since the conditional expectation E[1{Xτ+t⩽x} | σ(Xτ)]

is σ(Xτ) measurable, it is Fτ measurable.

Integrability: Since 0 ⩽ 1{Xτ+t⩽x} ⩽ 1, from the monotonicity of the conditional expectation it follows
that 0 ⩽ E[1{Xτ+t⩽x} | σ(Xτ)]⩽ 1, and hence it is absolutely integrable.

Orthogonality: Fix A ∈ Fτ . It suffices to show that for all x ∈ R and t > 0,

E[1AE[1{Xτ+t⩽x}|σ(Xτ)]] = E[1A1{Xτ+t⩽x}].

From almost sure countability of τ, we can write A = ∪i∈I A ∩ {τ = i}, where A ∩ {τ = i} ∈ Fi for
all i ∈ I. From the tower property of conditional expectation and Fi-measurability of A ∩ {τ = i},

E[1A1{Xt+τ⩽x}] =∑
i∈I

E[1A∩{Xt+τ⩽x}∩{τ=i}] =∑
i∈I

E[E[1A∩{Xt+i⩽x}∩{τ=i}|Fi]] =∑
i∈I

E[1A1{τ=i}E[1{Xt+i⩽x}|Fi]].

From Markov property of process X, we have E[1{Xt+i⩽x} | Fi] = E[1{Xt+i⩽x} | σ(Xi)]. This result
together with Exercise 1.5, we have

∑
i∈I

1{τ=i}E[1{Xt+i⩽x} | σ(Xi)] = ∑
i∈I

1{τ=i}E[1{Xt+τ⩽x} | σ(Xi)] = E[1{Xt+τ⩽x} | σ(Xτ)].

The result follows from the linearity of expectation.

Corollary 1.7. Any Markov process on countable index set T is strongly Markov.

Proof. For a countable index set T, any associated stopping time is countable.

Corollary 1.8. Let τ be a stopping time with respect to the natural filtration F• of an i.i.d. random sequence X.
Then (Xτ+1, . . . , Xτ+n) is independent of Fτ for each n ∈ N and identically distributed to (X1, . . . , Xn).

Proof. Let F : R → [0,1] be the common distribution for the i.i.d. sequence X, then it suffices to show that

E

[
n

∏
i=1

1{Xτ+i⩽xi} | Fτ

]
=

n

∏
i=1

F(xi), x ∈ Rn.

Since RHS of the above equation is a constant in [0,1], the measurability and integrability are clear. To
show orthogonality, we fix A ∈ Fτ and we need to show that

E[1A

n

∏
i=1

F(xi)] = E[1A

n

∏
i=1

1{Xτ+i⩽xi}].

We can write 1A = ∑m∈N1A1{τ=m} where A ∩ {τ = m} ∈ Fm. Therefore, from the linearity of expecta-
tion, the tower property of conditional expectation, and from X being i.i.d. , we can write

E[1A

n

∏
i=1

1{Xτ+i⩽xi}] = ∑
m∈N

E[1A1{τ=m}E[
n

∏
i=1

1{Xm+i⩽xi} |Fm]] =E[1A ∑
m∈N

1{τ=m}
n

∏
i=1

F(xi)] =E[1A

n

∏
i=1

F(xi)].

Theorem 1.9. Let X : Ω →XT be any real-valued Markov process adapted to its natural filtration F•, with right-
continuous sample paths. If the map t 7→ E[ f (Xs) | σ(Xt)] is right-continuous for each bounded continuous
function f , then X is strongly Markov.

Proof. Let f : R → R be a bounded continuous function, t ⩾ 0, and τ be an F•-adapted stopping time. It
suffices to show that f (Xt) satisfies the strong Markov property. For each m ∈ N, consider the intervals
Ik,m ≜ ((k − 1)2−m,k2−m] for all k ∈ [22m], and define

τm ≜
22m

∑
k=1

k2−m
1{τ∈Ik,m}.

We observe that τm is adapted to F• and takes countable values for each m. Further, we have τ1{τ⩽2m} ⩽
τm ⩽ 2m and τm is decreasing in m. From a.s. finiteness of stopping time τ, for almost all outcomes ω ∈ Ω
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there exists an m0(ω) ∈ N such that τ ⩽ τm. Hence, τm ↓ τ almost surely. Since τ ⩽ τm, it follows that
Fτ ⊆ Fτm . From the strong Markov property for the Markov process X at countably valued stopping
times, we have

E[ f (Xτm+t) | Fτm ] = E[ f (Xτm+t) | σ(Xτm)].

From the orthogonality property of conditional expectation, it follows that for each A ∈ Fτ ⊆ Fτm , we
have

E[1A f (Xτm+t)] = E[1AE[ f (Xτm+t)|σ(Xτm)]].

Taking limit as τm ↓ τ on both sides and applying dominated convergence theorem, we get

E[1A f (Xτ+t)] = E[1AE[ f (Xτ+t)|σ(Xτ)]].

Corollary 1.10. The counting process N : Ω → Z
R+
+ associated with the Poisson point process S : Ω → RN

+ ,
satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map t 7→ ENt f (Ns) for s ⩾ t and any bounded
continuous function f , which holds from the stationary and independent increment property of Poisson
process Nt. In particular, Ns − Nt is a Poisson random variable with mean Λ(t, s] and independent of
Nt, and hence

ENt f (Ns) = ENt f (Ns − Nt + Nt) = ∑
k∈Z+

e−Λ(t,s] Λ(t, s]k

k!
f (Nt + k).

The continuity of the map follows from the right continuity of Nt, boundedness and continuity of f ,
continuity of Λ(t, t + s], and bounded convergence theorem.

Corollary 1.11. The standard Brownian motion B : Ω → RR+ satisfies the strong Markov property.

Proof. It suffices to check the right continuity of the map t 7→ EBt f (Bs) for s ⩾ t and any bounded con-
tinuous function f , which holds from the stationary and independent increment property of Brownian
motion Bt. In particular, Bs − Bt is a Gaussian random variable with zero mean and variance s, inde-
pendent of Bt. Therefore,

EBt f (Bs) = EBt f (Bs − Bt + Bt) =
∫

x∈R
e−

x2
2(s−t) f (Bt + x)dx.

The continuity of the map follows from the continuity of Bt, boundedness and continuity of f , and
bounded convergence theorem.

Definition 1.12. Let S : Ω → RN
+ be a one-dimensional random walk associated with an i.i.d. positive

step-size sequence X : Ω → RN
+ . We define the associated counting process N : Ω → Z

R+
+ such that

Nt ≜ ∑n∈N1{Sn⩽t} is the number of steps in time (0, t].

Proposition 1.13. Let N : Ω → Z
R+
+ be the counting process associated with a random walk S : Ω → RN

+ , and
G• be the natural filtration for the positive step size sequence X : Ω → RN

+ . Then (NSm+t1 − NSm , . . . , NSm+tn −
NSm) is independent of Gm and has the same joint distribution as (Nt1 , . . . , Ntn).

Proof. Recall that {Nt = k} = {Sk ⩽ t,Sk+1 > t}, and hence we can write

{NSm+t − NSm = k} = {Sm+k ⩽ Sm + t,Sm+k+1 > Sm + t} .

Since Sm+k − Sm has same distribution as Sk for all k ⩾ 0 and is independent of Gm, we can write

P(
n⋂

i=1

{
NSm+ti − NSm = ki

}
|Gm) = P(

n⋂
i=1

{
Ski−m ⩽ t1,Ski−m > ti

}
) = P(

n⋂
i=1

{Nti = ki}).

3


	Strong Markov property

