Lecture-07: Renewal Process

1 Counting processes

Definition 1.1. A stochastic process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$is a counting process if
i. $N_{0}=0$, and
ii_ for each outcome $\omega \in \Omega$, the map $t \mapsto N_{t}$ is non-decreasing, integer valued, and right continuous.
Lemma 1.2. A counting process has finitely many jumps in a finite interval $(0, t]$.
Definition 1.3. A simple counting process has discontinuities of unit size.
Definition 1.4. The nth point of discontinuity of a simple counting process N_{t} is called the nth arrival instant and denoted by $S_{n}: \Omega \rightarrow \mathbb{R}_{+}$such that

$$
S_{0} \triangleq 0, \quad S_{n} \triangleq \inf \left\{t \geqslant 0: N_{t} \geqslant n\right\}, n \in \mathbb{N}
$$

The random sequence of arrival instants is denoted by $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$. The inter arrival time between $(n-1)$ th and nth arrival is denoted by $X_{n} \triangleq S_{n}-S_{n-1}$.

Exercise 1.5. Show that $P\left\{X_{n} \leqslant 0\right\}=0$ for simple counting processes.

Remark 1. The arrival sequence S is non-decreasing for each outcome $\omega \in \Omega$, since inf is non-decreasing for decreasing sets. That is, $S_{n} \leqslant S_{n+1}$ for all $n \in \mathbb{N}$.

Lemma 1.6 (Inverse processes). Inverse of a simple counting process N is its corresponding arrival process S. That is,

$$
\begin{equation*}
\left\{S_{n} \leqslant t\right\}=\left\{N_{t} \geqslant n\right\} . \tag{1}
\end{equation*}
$$

Proof. Let $\omega \in\left\{S_{n} \leqslant t\right\}$. Since N is a non-decreasing process, we have $N_{t} \geqslant N_{S_{n}}=n$. Conversely, let $\omega \in\left\{N_{t} \geqslant n\right\}$, then it follows from definition that $S_{n} \leqslant t$.

Figure 1: Sample path of a simple counting process.

Remark 2. Let $\mathcal{F}_{\bullet}=\left(\mathcal{F}_{s}: s \geqslant 0\right)$ be the natural filtration associated with the counting process N, that is $\mathcal{F}_{t} \triangleq \sigma\left(N_{s}, s \in[0, t]\right)$. Then $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is a sequence of random times adapted to filtration \mathcal{F}_{\bullet}.

Corollary 1.7. The probability mass function for the counting process N_{t} at time t can be written in terms of distribution functions of arrival sequence S as

$$
P\left\{N_{t}=n\right\}=F_{S_{n}}(t)-F_{S_{n+1}}(t)
$$

Proof. The event $\left\{N_{t} \geqslant n\right\}$ is the union of two disjoint events $\left\{N_{t}=n\right\} \cup\left\{N_{t} \geqslant n+1\right\}$, and the result follows from the probability of disjoint unions.

Definition 1.8. A point process is a collection $S: \Omega \rightarrow X^{\mathbb{N}}$ of randomly distributed points, such that $\lim _{n \rightarrow \infty}\left|S_{n}\right|=\infty$. A point process is simple if the points are distinct. Let $N(\varnothing)=0$ and denote the number of points in a measurable set $A \in \mathcal{B}(X)$ by

$$
N(A)=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \in A\right\}}
$$

Then $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathcal{B}(X)}$ is called a counting process for the simple point process S.
Remark 3. When $X=\mathbb{R}_{+}$, one can order these points of S as an increasing sequence such that $S_{1}<S_{2}<$ \ldots, and denote the number of points in a half-open interval $(0, t]$ by

$$
N_{t} \triangleq N(0, t]=\sum_{n \in \mathbb{N}} \mathbb{1}_{(0, t]}\left(S_{n}\right)=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \leqslant t\right\}} .
$$

Remark 4. General point processes in higher dimension don't have any inter-arrival time interpretation.

Exercise 1.9. Show that $P\left\{X_{n} \leqslant 0\right\}=0$ for simple point processes on \mathbb{R}_{+}.

2 Renewal processes

Definition 2.1 (Renewal Instants). Consider an i.i.d. sequence $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ of inter-renewal times and denote the nth renewal instant by $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ for all $n \in \mathbb{N}$, and $S_{0}=0$. The random sequence $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is called sequence of renewal instants or renewal sequence.

Remark 5. We interpret X_{n} as the time between the $(n-1)$ th and the nth renewal event, with a common distribution F. If $F(0)=1$, then it is a trivial process. Hence we will often assume that $F(0)<1$ to imply a non-degenerate renewal process.

Example 2.2 (Random walk). Random walk S on \mathbb{R}_{+}with i.i.d. non-negative step-sizes $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is a renewal sequence.

Example 2.3 (Markov chain). Let $X: \Omega \rightarrow X^{Z_{+}}$be a discrete time homogeneous Markov chain X with state space X. For $X_{0}=x \in X$ and defining $\tau_{x}^{+}(0) \triangleq 0$, let the recurrent times be defined inductively as

$$
\begin{equation*}
\tau_{x}^{+}(n)=\inf \left\{k>\tau_{x}^{+}(n-1): X_{k}=x\right\} . \tag{2}
\end{equation*}
$$

It follows from the strong Markov property of the process X, that $\tau_{x}^{+}: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{Z}_{+}}$is a renewal sequence.

Definition 2.4 (Renewal process). The associated counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$that counts number of renewal until time t with i.i.d. general inter-renewal times is called a renewal process, written as

$$
N_{t} \triangleq \sup \left\{n \in \mathbb{Z}_{+}: S_{n} \leqslant t\right\}=\sum_{n \in \mathbb{N}} \mathbb{1}_{\left\{S_{n} \leqslant t\right\}}
$$

Definition 2.5. A renewal process $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is said to be recurrent if the inter-renewal time X_{n} is finite almost surely for every $n \in \mathbb{N}$, the process is called transient otherwise. A renewal process $S: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ is said to be positive recurrent if the inter-renewal time X_{n} has finite mean.

Remark 6. We will mostly be interested in a positive recurrent renewal process, and hence we will often assume that the mean $\mu=\mathbb{E} X_{1}=\int_{\mathbb{R}} x d F(x)$ is finite.

Definition 2.6. The process is said to be periodic with period d if the inter-renewal times $X: \Omega \rightarrow X^{\mathbb{N}}$ take values in a discrete set $X \subseteq\left\{n d: n \in \mathbb{Z}_{+}\right\}$and $d=\operatorname{gcd}(X)$ is the largest such number. Otherwise, if there is no such $d>0$, then the process is said to be aperiodic. If the inter-arrival times is a periodic random variable, then the associated distribution function F is called lattice.

Lemma 2.7 (Finiteness). For a renewal process with mean inter-renewal time $\mathbb{E} X_{n}>0$, the number of renewals N_{t} in the time duration $(0, t]$ is a.s. finite for all $t>0$.

Proof. We are interested in knowing how many renewals occur per unit time. Since X_{n} is non-negative, we have $\mu=\mathbb{E} X_{n}=\mathbb{E}\left|X_{n}\right|$. Without any loss of generality, we assume that $\mu<\infty$. Then, from the L^{1} strong law of large numbers, we know that

$$
P\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}=1
$$

Since $\mu>0$, we must have S_{n} growing arbitrarily large as n increases. Thus, S_{n} can be finite for at most finitely many n. Indeed for any finite t, we have the the following set inclusion

$$
\bigcap_{n \in \mathbb{N}}\left\{N_{t} \geqslant n\right\}=\bigcap_{n \in \mathbb{N}}\left\{S_{n} \leqslant t\right\} \subseteq \bigcap_{n \in \mathbb{N}}\left\{\frac{S_{n}}{n} \leqslant \frac{t}{n}\right\} \subseteq\left\{\lim \sup _{n \in \mathbb{N}} \frac{S_{n}}{n}=0\right\}
$$

Since $\mu>0$, we obtain $\left\{\limsup _{n \in \mathbb{N}} \frac{S_{n}}{n}=0\right\} \subseteq\left\{\lim _{n \in \mathbb{N}} \frac{S_{n}}{n}=\mu\right\}^{c}$, it follows that $P\left\{N_{t}=\infty\right\}=0$ for any finite t. The result follows and $N_{t}=\max \left\{n \in \mathbb{N}: S_{n} \leqslant t\right\}$.

Exercise 2.8. Show that for sequences $x \in \mathbb{R}^{\mathbb{N}}$ and $\alpha \in \mathbb{R}^{\mathbb{N}}$, if $x_{n} \leqslant \alpha_{n}$ for all $n \in \mathbb{N}$, then $\limsup x_{n} x_{n} \leqslant \limsup { }_{n} \alpha_{n}$.

2.1 Delayed renewal processes

Many times in practice, we have a delayed start to a renewal process. That is, the renewal process has independent inter-renewal times $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$, where the common distribution for X_{n} is F when $n \geqslant 2$, and the distribution of first inter-arrival time X_{1} is G. Similar to the renewal process, the initial renewal instant is assumed to be $S_{0}=0$ and the nth renewal instant is $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$ for all $n \in \mathbb{N}$. The associated counting process is called a delayed renewal process and denoted by $N_{D}: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{R}_{+}}$. The following inverse relationship continues to hold between the counting process and the renewal sequence,

$$
\begin{equation*}
N_{D}(t)=\sup \left\{n \in \mathbb{N}: S_{n} \leqslant t\right\} . \tag{3}
\end{equation*}
$$

Example 2.9 (Markov chain). Let $X: \Omega \rightarrow X^{\mathbb{Z}_{+}}$be a discrete time homogeneous Markov chain X with state space V. For $X_{0}=x \in X$ and $y \neq x$, let $\tau_{y}^{+}(0) \triangleq 0$, inductively define the recurrent times as

$$
\tau_{y}^{+}(k) \triangleq \inf \left\{n>\tau_{y}^{+}(k-1): X_{n}=y\right\}
$$

It follows from the strong Markov property of the process X, that $\tau_{y}^{+}: \Omega \rightarrow \mathbb{N}^{\mathbb{Z}_{+}}$is a delayed renewal sequence.

Exercise 2.10. Consider a delayed renewal process with positive mean inter-renewal duration $\mathbb{E} X_{n}>0$ for $n \geqslant 2$ and finite mean for the first renewal instant $\mathbb{E} X_{1}$. Show that the number of renewals $N_{D}(t)$ in the time duration $(0, t]$ is a.s. finite for all $t>0$.

