Lecture-08: Distribution and renewal functions

1 Convolution of distribution functions

Definition 1.1. For two distribution functions F,G : R — [0, 1] the convolution of F and G is a distribu-
tion function F x G : R — [0,1] defined as

(F*G)(x) 2 '/y.e]RF(x —)dG(y), x €R.

Remark 1. We can verify that F * G is indeed a distribution function. That is, the function (F * G) is

(a) right continuous, i.e. lim,, | (F * G)(x;,) exists,

(b) non-decreasing, i.e. (F* G)(z) > (F*G)(x) forallz > x,

(c) having left limit of zero and right limit of unity, i.e. limy_, _(F * G)(x) = 0,limy o (F * G)(x) = 1.

Part (a) and (c) can be verified by exchanging limit and integration using Monotone convergence theo-
rem. Part (b) can be verified from monotonicity of integration.

Remark 2. We can verify that convolution is a symmetric and bi-linear operator. To show bi-linearity of
convolution, we need to show for any two finite sets of distribution functions (F; :i € [n]) and (G;:j €
[m]) and vectors « € R", B € R™, we have

#( Z}“iﬂp;]ﬁf@j) = (Y k) * (A;]ﬁij) =Y. ) wipj(FixG)).
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This follows from the linearity of integration in its arguments. To show symmetry of convolution, we
need to show for any two distribution functions (F,G), we have

F+G=%(F,G)=x%(G,F)=G=«F.

The symmetry can be verified by integration by parts and change of variables, since
J o FG=0)aGt) = [ dF = y)6() = Fx = y)G(y) = =0

x—y€ER

Lemma 1.2. Let X and Y be two independent random variables defined on the probability space (Q,F, P) with
distribution functions F and G respectively, then the distribution of X + Y is given by F x G.

Proof. The distribution function of sum X + Y is given by H : R — [0,1] where for any z € R,

H(2) = BLixves) = BB xavan o) =EFG - V)] = | | FG-y)iG()

O

Definition 1.3. Let X : QO — RN be an i.i.d. random sequence defined on the probability space (Q,F, P)
with the common distribution function F, then the distribution of S,, £ Y. 1 X;is denoted by F,.

Remark 3. The distribution F, is computed inductively as F, = F,,_1 * F for all n > 2, where F; = F.

Remark 4. For a renewal sequence S : ) — RY with iid. inter-renewal time sequence X : QO — RY
having a common distribution F : Ry — [0,1], the distribution function of the nth renewal instant is the
n-fold convolution F,; of the distribution function F.



Exercise 1.4 (Poisson process). For a renewal sequence S with the common distribution for i.7.d.
inter-renewal times being F(x) = 1 — e~** for x € R, show by induction that the distribution
of nth renewal instant at any time t € R is
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One can observe that F; = F, and hence the base case of n = 1 holds. If the hypothesis is assumed
to hold true for step n — 1, then show that it holds for step n, where F, = F,,_1 * F.

Corollary 1.5. The distribution function of nth arrival instant Sy, for delayed renewal process is G * F,,_1.

Corollary 1.6. The distribution function of counting process NP : Q — Zf* for the delayed renewal process is

P{NP =n} = P{S, <t} — P{Sus1 <t} = (G Fy1)(t) — (G F)(1).

2 Renewal functions

Definition 2.1. Mean of the counting process N : () — ZE* is called the renewal function denoted by
m: R4 — Ry defined by m; = E[N;] forall t € R.

Proposition 2.2. Renewal function m for a renewal process N : () — ZE* can be written as my =Y, e Fu (1),
where the distribution of the nth renewal instant is denoted by F,, for each n € IN.

Proof. Using the inverse relationship between counting process and the arrival instants, we can write

mt:]E[Nt]: ZP{NtZTl}: ZP{Sngt}: ZFn(t)-
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Example 2.3 (Poisson process). For a renewal sequence S with the common distribution for i.i.d. inter-
renewal times being F(x) = 1 — e~** for x € R, the renewal function is

mp=Yy_ I-}z(l‘):/ot)\(e_)‘S ) %)ds:/ot)\ds:/\t.
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Corollary 2.4. The renewal function mp for a delayed renewal process Np : () — ZE* with distribution G for
first inter-renewal times and F for other inter-renewal times, is given by mp = G + G * m.

Proof. We can write the renewal function for the delayed renewal process as

mP =ENP = Y (G*F,_1)(t) = G(t) + (G +m)(t).
nelN

Remark 5. f G=F,thenm =F + F x m.

3 Laplace transform of distribution functions and renewal functions

Definition 3.1. The Laplace transform £ : [0, 1]R — C€ for a distribution function F : R — [0,1] is a map
F:C — C defined for all s € C such that |F(s)| < co, as

L(F)(s) = F(s) 2 /y & V().

Remark 6. If X : O — R is a random variable with distribution function F, then F(s) = Ee~*X.



Lemma 3.2. The Laplace transform of convolution of two distribution functions is product of Laplace transform
of individual distribution functions.

Proof. Let F,G : R — [0,1] be two distribution functions such that £(F) = F and £(G) = G, then

L(F%G)(s) = / e /y _ F(x = )dG(y) = /y &G (y) x_ye]Re_s(x_y)dP(x —y) = L(F)L(G).
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Remark 7. Let the Laplace transform of the distribution functions of independent random variables X
and Y be F and G respectively, then the Laplace transform of the distribution of X + Y is FG.

Remark 8. Let X : Q — RN be an i.i.d. random sequence with the Laplace transform F = £(F) of the
common distribution function F, then the Laplace transform of the distribution of nth renewal instant

Sy £ Y1 | X;is given by £(F,) = (F)".

Corollary 3.3. Denoting the Laplace transform for the inter-renewal time distribution F by L(F) = F, the
Laplace transform of the renewal function m is given by

F(s)

o) = pe RMEE<

Corollary 3.4. For a delayed renewal process, we denote the Laplace transforms for the distributions of the first

renewal time and the subsequent inter-renewal times by G = £(G) and F = L(F) respectively. The Laplace
transform of the renewal function mp for the delayed renewal process is

mp(s) = —=— R{F(s)} <1.

Example 3.5 (Poisson process). The Laplace transform of an exponential distribution F(x) =1 — e

for x € Ry is given by F(s) = /\:‘_ for R(s) > —A. For a renewal sequence S with the common distri-
bution for i.i.d. inter-renewal times being the exponential distribution F, the Laplace transform for the
renewal function is .
F A
m(s) = i =—, R(s) > —A.
1—-F(s) s

The Laplace transform for the distribution F, is given by

Ei(s)= (1+ %)7 R(s) > —A.
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Exercise 3.6. Invert the Laplace transform F,(s) = (1 + %) in the region of convergence

R(s) > —A to obtain the distribution function F, for the nth arrival instant of a Poisson process
with rate A.

Proposition 3.7. For renewal process with EX, > 0, the renewal function is bounded for all finite times.

Proof. Since we assumed that P {X,, = 0} < 1, it follow from continuity of probabilities that there exists
« > 0, such that P{X,, > a} = B > 0. We can define bivariate random variables

Xn = al{XH>a} <X

Note that since X;’s are i.i.d. , so are X;’s. Each X; takes values in {0,a} with probabilities 1 — f and
B respectively. Let N; denote the renewal process with inter-arrival times X,, with arrivals at integer
multiples of &. Then for all sample paths, we have

2 ]l{):” X<t} Z ]1{Z gt} = N;.



Hence, it follows that EN; < EN;, and we will show that EN; is finite. We can write the joint event of
number of arrivals 1; at each arrival instant in ia for i € {0,...,k — 1}, as

k—1 k—1 k=1 n;
ﬂ {Nizx = ni} = {Xl < ‘X} ﬂ {X”i+1 > lx} ﬂ m {X”i—1+j < 0‘}'
i=0 i=0 i=0j=2

It follows that the joint distribution of number of arrivals at first k arrival instants is

k—

k—1 1
P (ﬂ {Nia = w}) =(-p Il -p
i=0

1=

It follows that the number of arrivals is independent at each arrival instant ka and geometrically dis-
tributed with mean 1/ and (1 — B)/p for k € IN and k = 0 respectively. Thus, forall t >0,

EN; <EN; < g S B

< 00,

O

Corollary 3.8. For delayed renewal process with EX;, > 0, the renewal function is bounded at all finite times.
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