
Lecture-10: Regenerative Processes

1 Regenerative processes

Let (Ω,F, P) be a probability space, and S : Ω → RN
+ be a renewal sequence, with the associated inter-

renewal sequence X : Ω → RN
+ and the counting process N : Ω → Z

R+
+ . That is, the nth renewal instant

is Sn ≜ ∑n
i=1 Xi for each n ∈ N and the number of renewals is Nt ≜ ∑n∈N1{Sn⩽t} until each time t ∈ R+.

Definition 1.1. Consider a stochastic process Z : Ω → RR+ defined over the same probability space.
The nth segment of the joint process (N, Z) : Ω → (Z+ × R)R+ is defined as the sample path in the nth
inter-renewal duration, written ζn ≜ (Xn, (ZSn−1+t : t ∈ [0, Xn)), n ∈ N.

Definition 1.2. The process Z is regenerative over the renewal sequence S, if its segments (ζn : n ∈ N)
are i.i.d. . The process Z is delayed regenerative, if S is a delayed renewal sequence and the segments
(ζn : n ∈ N) of the joint process are independent with (ζn : n ⩾ 2) being identically distributed.

Definition 1.3. Let Ft ≜ σ(Nu, Zu,u ⩽ t) be the history of the regenerative process until time t ∈ R+.
The renewal sequence S is the regeneration times for the process Z, and the process Z possesses the
regenerative property of the process (ZSn−1+t : t⩾ 0) being independent of history FSn−1 and distributed
identically to Z.

Remark 1. The definition says that probability law is independent of the past and shift invariant at
renewal times. That is after each renewal instant, the process becomes an independent probabilistic
replica of the process starting from zero.
Remark 2. If the stochastic process Z is bounded, then for any Borel measurable function f : R → R, we
have

E[ f (Zt) | FSn−1 ] = E[ f (Zt−Sn−1) | σ(Sn−1)]1{t⩾Sn−1} + f (Zt)1{t<Sn−1}.

Example 1.4 (Age process). Let N : Ω → R
R+
+ be the renewal counting process for the renewal sequence

S : Ω → RN
+ , then the age at time t is defined as At ≜ t − SNt . We observe that the sample path of age in

nth renewal interval is given by
ASn−1+t = t, t ∈ [0, Xn).

Since the segments (Xn, (t : t ∈ [0, Xn))) are i.i.d. , it follows that the age process A : Ω → R
R+
+ is regen-

erative.

Example 1.5 (Markov chains). For a discrete time homogeneous, irreducible, and positive recurrent
Markov chain X : Ω →XN on finite state space X⊂ R, we can inductively define the recurrent times for
state y ∈ X as τ+

y (0)≜ 0, and

τ+
y (n)≜ inf

{
k > τ+

y (n − 1) : Xk = y
}

.

From the strong Markov property of Markov chain X, it follows that τ+
y : Ω → NN is a de-

layed renewal sequence. For all n ∈ N, we define the nth excursion time to the state y as In ≜{
τ+

y (n − 1) + 1, . . . ,τ+
y (n)

}
and length of this excursion as Ty(n) ≜ τ+

y (n)− τ+
y (n − 1). We can write

the nth segment for the Markov chain X as ζn = (Ty(n), (Xτ+y (n−1)+k : k ∈ [Ty(n)]). Independence of the
segments follows from the strong Markov property. Further, in the segment n ⩾ 2 of the joint process,
we can write the joint distribution for (Ty(n), Xτ+y (n−1)+k) for k < Ty(n) and z ̸= y as

P
{

k < Ty(n) = m, Xτ+y (n−1)+k = z
}
= Py

{
τ+

y (1) > k, Xk = z
}

Pz

{
τ+

y (1) = m − k
}

.

1



The equality follows from the strong Markov property and the homogeneity of process X. It follows
that the Markov process X is a delayed regenerative process over delayed renewal sequence τ+

y .

Example 1.6 (Alternating renewal processes). A renewal sequence S : Ω → RN
+ where each inter-

renewal duration [Sn−1,Sn) consists of on time duration [Sn−1,Sn−1 +Zn) followed by off time duration
[Sn−1 + Zn,Sn−1 + Zn +Yn), is called an alternating renewal sequence, if (Z,Y) : Ω → (R2

+)
N is an i.i.d.

random sequence. The on-time duration Zn and off-time duration Yn are not necessarily independent.
We denote the distributions for on, off, and renewal periods by H, G, and F, respectively. Alternating
renewal processes form an important class of renewal processes, and model many interesting applica-
tions.

From the definition of nth inter-renewal duration Xn ≜ Zn + Yn, we see that X : Ω → RN
+ is an

i.i.d. sequence, and hence S is a renewal sequence. We can define an alternating stochastic process
W : Ω → {0,1}R

+ that takes values 1 and 0, when the renewal process is in on and off state respectively.
In particular, we can write Wt ≜ 1{At⩽ZNt+1} for any time t ∈ R+.

For each n ∈ N, we observe that WSn−1+t = 1[0,Zn)(t) for all t ∈ [0, Xn). Hence, we see that the nth
segment ζn = (Xn, (1[0,Zn ](t) : t ∈ [0, Xn)) and the segment sequence (ζn,n ∈ N) is i.i.d. , and therefore
it follows that W is a regenerative process over renewal sequence S.

Example 1.7 (Age-dependent branching process). Consider a population, where each organism i lives
for an i.i.d. random time period of Ti : Ω → R+ units with common distribution function F. Just before
dying, each organism produces an i.i.d. random number of offsprings N : Ω → Z+, with common distri-
bution P. Let Xt denote the number of organisms alive at time t. The stochastic process X : Ω → Z

R+
+ is

called an age-dependent branching process. This is a popular model in biology for population growth
of various organisms. We are interested in computing mt ≜ EXt when n = E[N] = ∑j∈N jPj.

We will show that starting from an organism, the population including itself and its subsequent de-
scendants is regenerative process. Let T1 and N1 denote the life time and offsprings of the first organism.
If T1 > t, then Xt is still equal to X0 = 1. In this case, we have

E[Xt1{T1>t}
∣∣ FT1 ] = X01{T1>t}. (1)

If T1 ⩽ t, then XT1 = N1 and each of the offsprings start the population growth, independent of the
past, and stochastically identical to the population growth of the original organism starting at time T1.
Hence, we can write E[Xt1{T1⩽t} |FT1 ] =E[∑N1

i=0 Xi
t−T1

1{T1⩽t} | σ(T1)] for this case, where (Xi
T1+u,u⩾ 0)

is a stochastic replica of (X(u),u ⩾ 0), and independent for each i ∈ [N1]. Hence for this case, we can
write the following expectation conditioned on T1

E[Xt1{T1⩽t}
∣∣ FT1 ] = E[

N1

∑
i=1

Xi
t−T1

1{T1⩽t}
∣∣ σ(T1)] = nmt−T11{T1⩽t}. (2)

Example 1.8 (Renewal reward process). Consider a renewal process S : Ω → RN
+ with i.i.d. inter-

renewal times X : Ω →RN
+ having common distribution F : R+ → [0,1]. The associated counting process

is denoted by N : Ω → Z
R+
+ . We also consider an associated reward sequence R : Ω → RN, such that

a reward Rn is earned at the end of the nth renewal interval. The reward Rn can possibly depend on
inter-renewal time Xn, but is i.i.d. across intervals n ∈ N. That is, we assume (X, R) : Ω → (R+ × R)N

be i.i.d. , then the reward process Q : Ω → RR+ is defined as the accumulated reward earned by time t
as

Qt ≜
Nt

∑
i=1

Ri.

The nth segment for process RNt+1 is ζn = (Xn, Rn). It follows that the segment sequence ζ : Ω → (R+ ×
R)N is i.i.d. , and hence RNt+1 is regenerative process with regeneration intervals being the renewal
intervals [Sn−1,Sn).
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2 Renewal equation

Let Z : Ω →ZR+ be a regenerative process over renewal sequence S : Ω →RN
+ defined on the probability

space (Ω,F, P), and F be the distribution of inter-renewal times. The counting process associated with
the renewal sequence S is denoted by N, and we define the history of the joint process Z, N until time
t by Ft. For any Borel measurable set A ∈ B(Z) and time t ⩾ 0, we are interested in computing time
dependent marginal probability ft ≜ P{Zt ∈ A} for all t ∈ R+. We can write the probability of the event
{Zt ∈ A} by partitioning it into disjoint events as

P{Zt ∈ A} = P{Zt ∈ A,S1 > t}+ P{Zt ∈ A,S1 ⩽ t} . (3)

We define the kernel function Kt ≜ P{S1 > t, Zt ∈ A} for all t ∈ R+ which is typically easy to compute
for any regenerative process. By the regeneration property applied at renewal instant S1, we have

E[1{Zt∈A,S1⩽t} | FS1 ] = E[1{Zt−S1
∈A} | σ(S1)]1{S1⩽t} = ft−S11{S1⩽t}. (4)

Taking expectation of (4) and combining with (3), we obtain the following fixed point renewal equation
for f as

ft = Kt +
∫ t

0
dF(s) ft−s = (K + F ∗ f )t, t ∈ R+. (5)

We assume that the distribution function F and the kernel K are known, and we wish to find f , and
characterize its asymptotic behavior.

Example 2.1 (Age and Excess time processes). For a renewal sequence S : Ω → RN
+ with associated

counting process N : Ω → Z
R+
+ , we can define the age process A : Ω → R

R+
+ where the age At at time t

is the time since last renewal, i.e.
At ≜ t − SNt , t ∈ R+.

Similarly, we can define the excess time process Y : Ω → R
R+
+ where the excess time Y(t) at time t is the

time until next renewal, i.e.
Yt ≜ SNt+1 − t, t ∈ R+.

Since the age process is regenerative for the associated renewal sequence, we can write the renewal
equation for its distribution function as

P{At ⩾ x} = P{At ⩾ x,S1 > t}+
∫ t

0
dF(y)P

{
At−y ⩾ x

}
.

Theorem 2.2. The renewal equation (5) has a unique solution f = (1 + m) ∗ K, where mt = ∑n∈N Fn(t) is the
renewal function associated with the inter-renewal time distribution F.

Proof. Since F ∗ (1 + m) = m, it follows that K + F ∗ (1 + m) ∗ K = (1 + m) ∗ K, and hence (1 + m) ∗ K
is a solution to the renewal equation. For uniqueness, let f be another solution, then h = f − K − m ∗ K
satisfies h = F ∗ h, and hence h = Fn ∗ h for all n ∈ N. From the finiteness of mt, it follows that Fn(t)→ 0
as n grows. Hence, limn∈N(Fn ∗ h)t = 0 for each t ∈ R+.

Proposition 2.3. Let Z be a regenerative process with state space X ⊂ R, over a renewal sequence S with
renewal function m. For a Borel measurable set A ∈ B(R) and the kernel function K : Ω → [0,1]R+ defined as
Kt ≜ P{Zt ∈ A,S1 > t} for all t ∈ R+, we can write

P{Zt ∈ A} = Kt +
∫ t

0
dm(s)Kt−s, t ∈ R+.

Example 2.4 (Age and excess time processes). Since the age and excess time processes are regenerative
for the associated renewal sequence, we can write the respective kernel functions KA,KY in the renewal
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equation for the respective distribution functions in terms of the complementary distribution function
F̄ of the inter-arrival times, as

KA
t ≜ P{At ⩾ x,S1 > t} = 1{t⩾x} F̄(t), KY

t ≜ P{Yt ⩾ x,S1 > t} = F̄(t + x).

From the solution of renewal equation it follows that

P{At ⩾ x} = 1{t⩾x} F̄(t) +
∫ t

0
dm(y)1{t−y⩾x} F̄(t − y), P{Yt ⩾ x} = F̄(t + x) +

∫ t

0
dm(y)F̄(t + x − y).

Example 2.5 (Alternating renewal process). Since the alternating renewal process is regenerative for
the associated renewal sequence, we can write the kernel function K : Ω → [0,1]R+ in the renewal equa-
tion for its distribution function in terms of the complementary distribution function F̄ of the inter-
arrival times, as Kt ≜ P{Wt = 1,S1 > t}= P{H1 > t}= H̄(t) for all t ∈R+. From the solution of renewal
equation it follows that

P(t)≜ P{W(t) = 1} = H̄(t) +
∫ t

0
dm(y)H̄(t − y).

Example 2.6 (Age-dependent branching process). Combining the case of number of organisms alive
before first birth {T1 > t} from (1), and the case of number of organisms alive after first birth {T1 ⩽ t}
from (2), we can write the mean function mt as

mt = E[Xt1{T1>t}] + E[Xt1{T1⩽t}] = F̄(t) + n
∫ t

0
mt−udF(u). (6)

This looks almost like a renewal function. Multiplying both sides of the above equation by e−αt, we get

mte−αt = e−αt F̄(t) + n
∫ t

0
e−α(t−u)mt−ue−αudF(u).

We define dG(t)≜ ne−αtdF(t), then the following choice of α > 0 ensures that G : R+ → [0,1] is a distri-
bution function on R+. In particular, α is chosen to be the unique solution to the equation

1 = n
∫ ∞

0
e−αtdF(t).

With this choice of distribution function G, the above equation (6) is a renewal equation for the function
f : Ω → R

R+
+ defined as ft ≜ e−αtmt for all t ∈ R+ with the kernel function K : Ω → [0,1]R+ defined as

Kt ≜ e−αt F̄(t) for all t ∈ R+ and the common inter-renewal time distribution being G. That is,

f = K + f ∗ G.

Define the inter-renewal time distribution G1 ≜ G to inductively define the nth renewal time distribu-
tion Gn ≜ Gn−1 ∗ G and the associated renewal function mG ≜ ∑n∈N Gn, to write the solution of the
renewal equation (6) as

mte−αt = e−αt F̄(t) +
∫ t

0
e−α(t−u) F̄(t − u)dmG

u .

Example 2.7 (Renewal Reward Process). Considering the event of no renewal or at least one renewal
before time t for the regenerative process RNt+1, we can write

gt ≜ E[RNt+1] = E[RNt+11{S1>t}] + E[RNt+11{S1⩽t}]

From the definition of counting process N, we have t 7→ Kt ≜ E[RNt+11{S1>t}] = E[R11{X1>t}]. Fur-
ther, from the regenerative property of RNt+1, we obtain E[RNt+11{S1⩽t} | FS1 ] = 1{S1⩽t}gt−S1 . Thus,
E[RNt+11{S1⩽t}] = E[1{S1⩽t}gt−S1 ]. Combining the two case, we get the renewal equation g = K + g ∗ F,
which has the unique solution g = K + K ∗ m.
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3 Inspection Paradox

Lemma 3.1 (Inspection Paradox). For a renewal process S : Ω → RN
+ with inter-arrival times X : Ω → RN

+

and associated counting process N : Ω → Z
R+
+ , we have EXNt+1 ⩾ EX1.

Proof. It suffices to show that t 7→ gx
t ≜ P{XNt+1 > x}⩾ F̄(x) for all x, t ∈ R+. To this end, we first recall

that XNt+1 is a regenerative process with regeneration instant sequence S since its segment during the
nth renewal period [Sn−1,Sn) is ξn = (Xn, (Xn, t ∈ [Sn−1,Sn))). Defining the kernel function t 7→ kx

t ≜
P{XNt+1 > x,S1 > t}= F̄(x ∨ t), we can write the solution to the renewal equation as gx = kx ∗ (1+ m).

From the Chebyshev’s inequality for the increasing functions z 7→ f (z) ≜ 1{z>x} and z 7→ g(z) ≜
1{z>t} and random variable X1, we can write kt = E1{XNt+1>x,X1>t} = E1{X1>x,X1>t} ⩾ F̄(x)F̄(t). Since

F̄ ∗ (1 + m) = 1, it follows that g = k ∗ (1 + m)⩾ F̄(x) and hence

EXNt+1 =
∫

x∈R+

gtdx ⩾
∫

x∈R+

F̄(x)dx = EX1.

Alternatively, we observe that F̄(x ∨ t)⩾ F̄(x)F̄(t) and hence the result follow.

Remark 3. The accumulated reward RNt+1 in the current renewal interval is possibly dependent on the
current renewal duration XNt+1. If the reward accrual rate is positive, then it follows from the inspection
paradox that ERNt+1 ⩾ ER1.

Lemma 3.2. For a renewal reward process with positive reward accrual rate, we have ERNt+1 ⩾ ER1.

Proof. Recall that RNt+1 is a regenerative process, and we can write the solution to the renewal equation
for its tail probability t 7→ f x

t ≜ P{RNt+1 > x} in terms of the kernel function t 7→ kx
t ≜ P{RNt+1 > x,S1 > t}

as f x = kx ∗ (1+m). From the distribution functions F, H for X1, R1 and Chebyshev’s inequality applied
to increasing indicator functions of random variable X1, we obtain kx

t ⩾ H̄(x)F̄(t). Since F̄ ∗ (1+m) = 1,
it follows that f x ⩾ H̄(x) and hence ERNt+1 ⩾ ER1.

A Chebyshev’s sum inequality

Theorem A.1. Consider two non-decreasing positive measurable functions f , g : R→R+ and a random variable
X : Ω → R. Then, E f (X)g(X)⩾ E f (X)Eg(X).

Proof. Consider a random vector Y : Ω → R2 to be an i.i.d. replica of X : Ω → R and the product ( f (Y1)−
f (Y2))(g(Y1)− g(Y2)). From the linearity of expectation and Y1,Y2 being i.i.d. to X, we can expand the
mean of the product as

E( f (Y1)− f (Y2))(g(Y1)− g(Y2)) = 2E f (X)g(X)− 2E f (X)Eg(X) = 2E( f (X)−E f (X))(g(X)−Eg(X)).

Since f , g are non-decreasing, we have ( f (Y1)− f (Y2))(g(Y1)− g(Y2))1{Y1⩾Y2}⩾ 0 and ( f (Y1)− f (Y2))(g(Y1)−
g(Y2))1{Y1<Y2} ⩾ 0. Summing the two terms, we obtain

( f (Y1)− f (Y2))(g(Y1)− g(Y2))⩾ 0.
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