Lecture-11: Key Lemma and Blackwell Theorem

1 Key Lemma

Theorem 1.1 (Key Lemma). Consider a renewal sequence S : Q — RY with ii.d. inter-renewal times X :

Q — RN having common distribution function F, associated counting process N : Q) — Z%*, and the renewal
function m : Ry — Ry. Then,

P{SN,<s}:F(t)+/OsF(t—y)dm(y), t>s>0.

Proof. We can see that event of time of last renewal prior to t being smaller than another time s can be
partitioned into disjoint events corresponding to number of renewals until time f. Each of these disjoint
events is equivalent to occurrence of nth renewal before time s and (n + 1)th renewal past time ¢. That

is,
{SNt < S} = U {SNt <s, Ny = n} = U {Sn <s,5,41 > f}.
nez nez
Recognizing that Sy = 0,51 = X3, and that S, 11 = Sy + X},+1, we can write
P{Sn, <s} =P{Xy >t} + ) B[lis, < Ellx,  ,>t—s,310(Sn)]]-
nelN

We recall that the distribution function of nth renewal instant S, is the n-fold convolution of F denoted
by Fy. Taking expectation of F(t — S,)1(s, <}, We get

P{Sx, <s} = E(t +Z/ Y)dEa (1)
nelN

Using monotone convergence theorem to interchange integral and summation, and noticing that m(y) =
Y nen Fn(y), the result follows. O

Exercise 1.2. Prove the key lemma using the marginal distribution of age process, and the fact
that A; =t — Sy, for all t € R ;. Recall that the age process is regenerative, and hence its marginal
distribution can be obtained as the solution to its corresponding renewal equation.

Remark 1. Key lemma tells us that distribution of Sy, has probability mass at 0 and density between
(0,1], that s,

P{Sn, =0} = F(t), dFs, (y) = F(t—y)dm(y), 0<y<t

Remark 2. Probability of nth renewal taking place in the duration [y,y + dy] is givenby P{S, € (y,y +dy)} =
dF,(y). Therefore, probability of some renewal taking place in the infinitesimal neighborhood of y, is

P( Unen {Sn € (y,y + dy)}) = ZNan(y) = dm(y).

Probability of no renewal in the interval (y + dy, t], given the nth renewal occurred at time y, is given
by P{X, .1 >t—y} =F(t —y). It follows that

P{renewal occurs in (y,y + dy) and next arrival after t — y} = dFs, (y).

That is, the density of last renewal time Sy, has the interpretation of renewal taking place in the in-
finitesimal neighborhood of y, and no renewal in the duration [y, t].



Example 1.3 (Poisson process). Let the inter-renewal time i.i.d. random sequence X : 3 : R be expo-
nentially distributed with common distribution F(x) = 1 — e~** for x € R;. Then, the distribution of
last renewal is given by

X
P{Sn,<x}= L / /\e*)‘(t*y)dy = e*/\(t*"), 0<x<t.
0

[ Exercise 1.4. Find the age and the excess time distribution for a Poisson process.

2 Delayed Regenerative Process

We are ready to study the delayed regenerative processes Z : ) — RR+, with delayed regeneration
points S : O — RY and counting process Np : 0 — Z]If. We assume that inter-renewal time sequence
X: 00— ]Rﬂ_tI is independent with distributions G £ Fx, and F £ Fx, foralln > 2. Thatis, (X, :n >2) is
i.i.d. . We denote the distribution of nth renewal instant S;, by G * F,,_1 where F, is n-fold convolution
of F, and the delayed renewal function by mp = }_,cn G * F,—1. The nth segment of the joint process
(Np,Z) is given by ¢, = (Xy, (Zt,t € [Sy_1,Sx) : n € N), and in the delayed regenerative process, the
segments { are independent and ({,, : n > 2) is i.i.d. . In this case, (Zg, 1+ : t € [0,X,41)) is independent
of Fs, and distributed identically to (Zs, ¢t € [0,X2)) foralln € IN.

Theorem 2.1. For a delayed regenerative process Z : Q) — R®+ and a Borel measurable set A € B(R), we define
the probability function f : Ry — [0,1] as fi = P{Z; € A}, the kernel functions K1,K : R} — [0,1] such that
Ki(t) 2 P{Zi € A, Sy > t},Ko(t) £ P{Zs, 11 € At €[0,X5)} forall t € Ry. Then, f = Ky + Kp * mp.

Proof. For a Borel measurable set A € B(IR), we can write the probability f; = P{Z; € A} of the delayed
regenerative process taking values in this set A as disjoint sum of probability of disjoint partitions of
this event {Z; € A,Ny =n} as

fi = P{Zt €AS5 > t} + Z IE[]I{ZfEA}]l[Sn,Sn+])(t)}'
nelN

Using the tower property of conditional expectation and the regenerative property of Z, we can write
E[Lz,eay s, s,0) (D] = Ells,<nBLze o caylox,.) (= Sn) [ Ts, 1] = E[ls, <y Ka(t = Sn)l-

The result follows from aggregating the results for all n € IN, and the fact that mp =), Fs, - O

Example 2.2 (Age process). For a delayed renewal process S : Q — RY, consider the age process A :
QO — ]R]EJr defined as A; £ t — Sy, for all t € Ry, and its nth segment given by (, £ (Xu,(Ag, 4e:t€
[0,X,))) = (Xy, (t:t€[0,Xy,))). Since segments are independent, and identically distributed for n > 2, it
follows that A is a delayed regenerative process. For a measurable set B £ [x,00), then we can compute
the kernel functions

Kl(t) = P{At >x,5 > f} = 1{t>x}G(t)l Kg(t) = P{A51+t >x,51+te [O,Xz)} = 1{t2x}F(t)’

Therefore, we can write the distribution of last renewal time for the delayed renewal process as

oy t -
P{Sn, <x} =P{Ar >t —x} =1(,50,G(t) +/O dm® (y) Ly F(t = y).

Corollary 2.3 (Delayed Key Lemma). Consider a delayed renewal sequence S : QO — RY with independent
inter-renewal times X : QO — RY with first renewal time having distribution G and common distribution F



or inter-renewal times Xn,?l > 2), associated countin rocess N- : Q) — Z +, and the renewal function
g P +
mp IIR+ — ]R+. ThETl,

S
p{sNDgs}ZG(tH/O E(t —y)dmp(y),  t=530.

t

3 Blackwell Theorem

Lemma 3.1. For a renewal sequence S, let F be the inter-renewal time distribution such that inf {x € Ry : F(x) =
oo, then for any b > 0
sup{m; —m;_p:t € Ry} < oo.

Proof. Recall that m =Y, .y F, and hence m * F = m — F. This implies that m * (1 — F) = F. Since the
function 1 — F is monotonically non-increasing, infsc[o ) F(s) = F(b). Therefore,

1> F(t) = /Otdm(s)F(t—s) > /tihdm(s)l:"(t—s) > [y — my_y)E(b),

where b is chosen so that F(b) < 1. Hence, the result follows. O

Theorem 3.2 (Blackwell’s Theorem). Consider a renewal sequence S with the inter-renewal time distribution
F such that inf{x € Ry : F(x) =1} = oo, mean of inter-renewal time p, and renewal function m. If F is not

lattice, then foralla > 0
a
lim myy, —my = —.
t—o0

If F is lattice with period d, then lim; e M (4 1)d — Mpd = %.
Proof. We will not prove that the following limit exists for non-lattice F,

g(a) £ }LIEIO[WH[] — my 1)

However, we show that if this limit does exist, it is equal to % as a consequence of elementary renewal
theorem. To this end, note that m; ;4 — mp = my 41 — Migq + My, — my. Taking limits on both sides
of the above equation, we conclude that g(a + b) = g(a) + ¢(b). The only increasing solution of such a
g:Ry = Ry foralla > 0is g(a) = ca, for some positive constant c. To show ¢ = %, define a sequence

X € ]R]f in terms of renewal function m1;, as
A
Xp=my —my_1, n € N.

Note that Y ; x; = my, and lim,cN x, = g(1) = c. Further recall that, if a sequence x € RN converges,
then the running average sequence a € RN defined asa, = 1 Y, x; converges to the same limit. Hence,

n
N . . 1 X .
we have the Cesaro mean converging to lim,cn % = lim, e % = c. Therefore, we can conclude

¢ = 1 by elementary renewal theorem.
When F is lattice with period d, the limit in (I) doesn’t exist. (See the following example). However,

the theorem is true for lattice again by elementary renewal theorem. Indeed, since ™24 — 1 we can

n m
define x,, = m,y — m(,_1)y and observe that } ;' ; x; = m,; and the Cesaro mean %Z?:l x; converges to

% by elementary renewal theorem. O

Example 3.3. Consider a renewal process with P{X,, =1} =1, that is, there is a renewal at every posi-
tive integer time instant with unit probability. Then F is lattice with d = 1. Now, for 4 = 0.25, and ¢, =
n+ (—1)"a, we see that m;, = Ny, =n — 1y, oqa}, and my, o = n. It follows that my, 14 — my, = L, oady,
and hence limy, o0 ¢, 44 — My, does not exist. It follows that lim;_,, 11, — m; does not exist.

Exercise 3.4. Let m be the renewal function associated with a non-lattice F. Show that the fol-
lowing limit exists

g(a) = lim [my o — my].

1}



Remark 3. In the lattice case, if the inter arrivals are strictly positive, that is, there can be no more than
one renewal at each nd, then we have that

lim P {renewal at nd} = E
n—oo ],[

Corollary 3.5 (Delayed Blackwell’s Theorem). Consider a delayed renewal process with independent inter-
renewal times, with the distribution of first renewal being G with mean ug, and the distribution of inter-renewal
times for n > 2 being F with mean up and the property inf{x: F(x) =1} = oo. Let the associated renewal
function be mP and F is not lattice, then foralla>0

. p _,D_ %
tlgl;mtﬂ my = 1E
If F and G are lattice with period d, then limy,_sco maﬂ)d —mb, = P[LF
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