
Lecture-12: Key Renewal Theorem

1 Key Renewal Theorem

Theorem 1.1 (Key renewal theorem). Consider a recurrent renewal process S : Ω → RN
+ with renewal function

m : R+ → R+, the common mean µ, and the distributionF for i.i.d. inter-renewal times. For any directly Riemann
integrable function z ∈ D, we have

lim
t→∞

∫ t

0
z(t − x)dm(x) =

{
1
µ

∫ ∞
0 z(t)dt, F is non-lattice,

d
µ ∑k∈Z+

z(t + kd), F is lattice with period d, t = nd.

Proposition 1.2 (Equivalence). Blackwell’s theorem and key renewal theorem are equivalent.

Proof. Let’s assume key renewal theorem is true. We select z : R+ → R+ as a simple function with value
unity on interval [0, a] for a ⩾ 0 and zero elsewhere. That is, z(t) = 1[0,a](t) for any t ∈ R+. From Proposi-
tion A.3, it follows that z is directly Riemann integrable. Therefore, by Key Renewal Theorem, we have

lim
t→∞

[m(t)− m(t − a)] =
a
µ

.

We defer the formal proof of converse for a later stage. We observe that, from Blackwell theorem, it follows

lim
t→∞

dm(t)
dt

(a)
= lim

a→0
lim
t→∞

m(t + a)− m(t)
a

=
1
µ

.

where in (a) we can exchange the order of limits under certain regularity conditions.

Remark 1. Key renewal theorem is very useful in computing the limiting value of some function g, where
gt is a probability or expectation of an event at an arbitrary time t, for a regenerative process. This value is
computed by conditioning on the time of last regeneration prior to time t.

Corollary 1.3 (Delayed key renewal theorem). Consider an aperiodic and recurrent delayed renewal process
S : Ω → RN

+ with independent inter-arrival times X : Ω → RN
+ with first inter-renewal time distribution G and

common inter-renewal time distribution F for (Xn : n ⩾ 2). Let the renewal function be denoted by mD and means
EX1 = µG and EX2 = µF. For any directly Riemann integrable function z ∈ D and F non-lattice, we have

lim
t→∞

∫ t

0
z(t − x)dmD(x) =

1
µF

∫ ∞

0
z(t)dt.

Remark 2. Any kernel function t 7→ Kt ≜ P{Zt ∈ A, X1 > t} ⩽ F̄(t), and hence is d.R.i. from Proposi-
tion A.3(b).

Example 1.4 (Limiting distribution of regenerative process). For a regenerative process Z over a delayed
renewal process S with finite mean i.i.d. inter-arrival times, we have K2(t) ≜ P

{
ZS1+t ∈ A, X2 > t

}
⩽ F̄(t)

for any A ∈ B(R), and hence the kernel function K2 ∈ D. Applying Key Renewal Theorem to renewal
function, we get the limiting probability of the event {Zt ∈ A} as

lim
t→∞

P{Zt ∈ A} = lim
t→∞

(mD ∗ K2)(t) =
1

µF

∫ ∞

t=0
K2(t)dt.
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Example 1.5 (Limiting distribution of age and excess time). For a delayed renewal process S with finite
mean independent inter-renewal times such that the distribution of first renewal time is G, and the distri-
bution of subsequent renewal times are identically F. Denoting the associated counting process by ND and
renewal function mD, we can write the limiting probability distribution of age as Fe(x)≜ limt→∞ P{At ⩽ x}.
We can write the complementary distribution as

F̄e(x) = lim
t→∞

P{At ⩾ x} = lim
t→∞

∫ t

0
dmD(t − y)1{y⩾x} F̄(y) =

1
µF

∫ ∞

x
F̄(y)dy.

Example 1.6 (Limiting on probability of alternating renewal process). Consider an alternating renewal
process W with random on and off time sequence Z and Y respectively, such that (Z,Y) is i.i.d. . We denote
the distribution of on and off times by non-lattice functions H and G respectively. If EZn and EYn are finite,
then applying Key renewal theorem to the limiting probability of alternating process being on, we get

lim
t→∞

P(t) = lim
t→∞

(m ∗ H̄)(t) =
EZn

EZn + EYn
.

Example 1.7 (Limiting population in age dependent branching processes). For a population evolution as
age dependent branching process with initial population of unity, and i.i.d. lifetimes with common distri-
bution F and the mean number of progenies n, the mean number of organisms alive at time t is

mte−αt = e−αt F̄(t) +
∫ t

0
e−α(t−u) F̄(t − u)dmG

u ,

where α is chosen to be the unique solution to the equation 1 = n
∫ ∞

0 e−αtdF(t), and mG is the renewal func-
tion associated with the distribution G defined as dG(t)≜ ne−αtdF(t). Since the kernel function e−αt F̄(t) is
non-negative, monotone non-increasing, and integrable, it is directly Riemann integrable. Hence, we can
apply key renewal theorem to obtain the following limit

lim
t→∞

mte−αt =
1

µG

∫ ∞

0
e−αt F̄(t)dt =

∫ ∞
0 e−αt F̄(t)dt

n
∫ ∞

0 te−αtdF(t)
.

Using integration by parts, we can write the numerator as
∫ ∞

0 e−αt F̄(t)dt = 1
α − 1

α

∫ ∞
0 e−αtdF(t) = 1

α

(
1 − 1

n

)
.

Exercise 1.8 (Age and excess time process as an alternating renewal process). Consider a renewal
sequence with a non-lattice distribution F for i.i.d. inter-renewal times X : Ω → RN

+ such that EX2
1 <

∞. For each x ∈ R+, we can define an alternating renewal process W : Ω → [0,1]R+ defined as
Wt ≜ 1{At⩽x}.
(a) Show that W is a regenerative alternating process.
(b) Show that its nth on and off times are Zn ≜ Xn ∧ x and Yn ≜ Xn − Zn respectively.
(c) Repeat the same exercise when on times are excess time being less than a threshold x.
(d) Show that the limiting age and excess time distributions are identical to Fe.
(e) Show that the limiting mean of age and excess times satisfy the following equality,

lim
t→∞

EYt = lim
t→∞

EAt =
EX2

1
2EX1

.

(f) Show that limt→∞

(
mt − t

EX1

)
=

EX2
1

2(EX1)2 − 1.
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A Directly Riemann Integrable

For each scalar h > 0 and natural number n ∈ N, we can define intervals In(h)≜ [(n− 1)h,nh), such that the
collection (In(h),n ∈ N) partitions the positive real-line R+. For any function z : R+ → R+ be a function
bounded over finite intervals, we can denote the infimum and supremum of z in the interval In as

zh(n)≜ inf{z(t) : t ∈ In(h)} zh(n)≜ sup{z(t) : t ∈ In(h)} .

We can define functions zh,zh : R+ →R+ such that zh(t)≜∑n∈N zh(n)1In(h)(t) and zh(t)≜∑n∈N zh(n)1In(h)(t)
for all t ∈ R+. From the definition, we have zh ⩽ z ⩽ zh for all h ⩾ 0. The infinite sums of infimum and
supremums over all the intervals (In(h),n ∈ N) are denoted by∫

t∈R+

zh(t)dt = h ∑
n∈N

zh(n),
∫

t∈R+

zh(t)dt = h ∑
n∈N

zh(n).

Remark 3. Since zh ⩽ z ⩽ zh, we observe that
∫

t∈R+
zh(t)dt ⩽

∫
t∈R+

zh(t)dt. We observe that zh and zh are
non-decreasing and non-increasing in h respectively. As as h ↓ 0, if both left and right limits exist and are
equal, then the integral value

∫
t∈R+

z(t)dt is equal to the limit.

Definition A.1 (directly Riemann integrable (d.R.i.)). A function z : R+ 7→ R+ is directly Riemann in-
tegrable and denoted by z ∈ D if the partial sums obtained by summing the infimum and supremum of
h, taken over intervals obtained by partitioning the positive axis, are finite and both converge to the same
limit, for all finite positive interval lengths. That is,

∑
n∈N

hzh(n) < ∞, lim
h↓0

∫
t∈R+

zh(t)dt = lim
h↓0

∫
t∈R+

zh(t)dt.

The limit is denoted by
∫

t∈R+
z(t)dt = limh↓0 ∑n∈N hzh(n) = limh↓0 ∑n∈N hzh(n). For a real function z :

R+ → R, we can define the positive and negative parts by z+,z− : R+ → R+ such that for all t ∈ R+

z+(t)≜ z(t) ∨ 0, and z−(t)≜−(z(t) ∧ 0). If both z+,z− ∈ D, then z ∈ D and the limit is∫
R+

z(t)dt ≜
∫

R+

z+(t)dt −
∫

R+

z−(t)dt.

Remark 4. We compare the definitions of directly Riemann integrable and Riemann integrable functions.
For a finite positive M, a function z : [0, M]→ R is Riemann integrable if

lim
h→0

∫ M

0
zh(t)dt = lim

h→0
h
∫ M

0
zh(t)dt.

In this case, the limit is the value of the integral
∫ M

0 z(t)dt. For a function z : R+ → R,∫
t∈R+

z(t)dt = lim
M→∞

∫ M

0
z(t)dt,

if the limit exists. For many functions, this limit may not exist.

Remark 5. A directly Riemann integrable function over R+ is also Riemann integrable, but the converse
need not be true. For instance, we can define En ≜

[
n − 1

2n2 , n + 1
2n2

]
for each n ∈ N, and consider the

following Riemann integrable function z : R+ → R+

z(t) = ∑
n∈N

1En(t), t ∈ R+.

We observe that z is Riemann integrable, however
∫

t∈R+
z(t)dt is always infinite. It suffices to show that

h ∑n∈N zh(n) is always infinite for every h > 0. Since the collection (In(h) : n ∈ N) partitions the entire R+,
for each n ∈ N there exists an m ∈ N such that En ∩ Im(h) ̸= ∅, and therefore zm(h) = 1. It follows that∫

t∈R+

z(t)dt = ∑
m∈N

h = ∞.
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Exercise A.2 (Necessary conditions for d.R.i.). If a function z : R+ → R+ is directly Riemann inte-
grable, then show that z is bounded and continuous a.e.

Exercise A.3 (Sufficient conditions for d.R.i.). Show that if any of the following conditions hold for
a function z : R+ → R+, then it is directly Riemann integrable.

(a) z is monotone non-increasing, and Lebesgue integrable.

(b) z is bounded above by a directly Riemann integrable function.

(c) z has bounded support.

(d) z is continuous, and has finite support.

(e) z is continuous, bounded, and σδ is bounded for some δ.

(f)
∫

t∈R+
zh(t)dt is bounded for some h > 0.

Exercise A.4. For any directly Riemann integrable function z : R+ → R+ show that limt→∞ z(t) =
limn→∞ zh(n).

Proposition A.5 (Tail Property). If z : R+ → R+ is directly Riemann integrable and has bounded integral value,
then limt→∞ z(t) = 0.

Proof. If z ∈ D, then h ∑n∈N zh(n) < ∞ for all h > 0. This implies that the infinite positive sum ∑n zh(n) is
finite, and hence limn→∞ zh(n) = limt→∞ z(t) = 0.

Corollary A.6. Any distribution F : R+ → [0,1] with finite mean µ, the complementary distribution function F̄ is
d.R.i.

Proof. Since F̄ is monotonically non-increasing and its Lebesgue integration is
∫

R+
F̄(t)dt = µ, the result

follows from Proposition A.3(a).
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