
Lecture-13: Applications of Key Renewal Theorem

1 Equilibrium renewal process

Definition 1.1. The limiting distribution of age for a renewal process with common inter-renewal du-
ration distribution F : R+ → [0,1] is given by the equilibrium distribution Fe : R+ → [0,1] defined as
Fe(x)≜ 1

µF

∫ x
0 F̄(y)dy for all x ∈ R+.

Lemma 1.2. The moment generating function of Fe(x) is F̃e(s) =
1−F̃(s)

sµF
.

Proof. By definition, F̃e(s) = E
[
e−sX], where X is a random variable with distribution function Fe(x).

We use integration by parts, to write

F̃e(s) =
∫ ∞

0
e−sxdFe(x) =

1
sµF

− 1
sµF

∫ ∞

0
e−sxdF(x) =

1
sµ

(1 − F̃(s)).

Definition 1.3. A delayed renewal process with the initial arrival distribution G = Fe is called the equi-
librium renewal process.

Remark 1. Observe that Fe is the limiting distribution of the age and the excess time for the renewal
process with common inter-renewal distribution F. Hence, if we start observing a renewal process at
some arbitrarily large time t, then the observed renewal process is the equilibrium renewal process. This
delayed renewal process exhibits stationary properties. That is, the limiting behaviors are exhibited for
all times.

Theorem 1.4 (Renewal function). The renewal function me
t for the equilibrium renewal process is linear for

all times. That is, me
t =

t
µF

.

Proof. We know that the Laplace transform of renewal function me(t) is given by

m̃e(s) =
G̃(s)

1 − F̃(s)
=

F̃e(s)
1 − F̃(s)

=
1

sµF
.

Further, we know that the Laplace transform of function t/µ is given by Lt/µ(s) = 1
µ

∫ ∞
0 e−sxdx = 1

sµ .

Since moment generating function is a one-to-one map, me
t =

t
µF

is the unique renewal function.

Theorem 1.5 (Age and excess time). The distribution of age Ae
t and excess time Ye

t for the equilibrium renewal
process are stationary. In particular, for all t ∈ R+ and x ∈ R+, we have

P{Ae
t > x} = 1{t>x} F̄e(x), P{Ye

t > x} = F̄e(x).

Proof. Recall that the age process Ae and the excess time process Ye are delayed regenerative processes
and dme

t =
1

µF
. The solution of renewal equation for any equilibrium regenerative process is f = K1 +

K2 ∗ me. We can define function t 7→ ft ≜ P{Ae
t > x} and its kernel functions

t 7→ K1(t)≜ P{Ae
t > x, X1 > t} = 1{t>x} F̄e(t), t 7→ K2(t)≜ P

{
Ae

S1+t > x, X2 > t
}
= F̄(t)1{t>x}.

We can write the marginal distribution of equilibrium age process as

P{Ae
t > x} = 1{t>x}(F̄e(t) +

1
µF

∫ t

x
F̄(u)du) = 1{t>x}(F̄e(t) + F̄e(x)− F̄e(t)) = 1{t>x} F̄e(x).
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Similarly, for t 7→ ft ≜ P{Ye
t > x}, we can write the kernel functions as K1(t) = F̄e(t + x) and K2(t) =

F̄(t + x). Thus, we can write the marginal distribution of equilibrium excess time process as

P{Ye
t > x} = F̄e(t + x) +

1
µF

∫ t

0
F̄(t + x − u)du = F̄e(t + x) +

1
µF

∫ t+x

x
F̄(y)dy = F̄e(x).

Remark 2. When we start observing the counting process at time s, the observed renewal process is
delayed renewal process with initial distribution Ye at time s being identical to the distribution Fe.
Hence, the number of renewals Ne

t+s − Ne
s has the same distribution as Ne

t in duration (0, t]. That is, the
distribution of counting process is shift invariant.

Theorem 1.6 (Stationary increments). The counting process Ne : Ω → Z
R+
+ for the equilibrium renewal

process has stationary increments.

Proof. We can write the event
{

Ne
s+t − Ne

s = n
}
=

{
SNe

s+n ⩽ t < SNe
s+n+1

}
where SNe

s+n =Ye
s +∑n

k=2 XNe
s+k.

Since Ye
s is distributed identically to X1, to show the result it suffices to show that (XNe

s+k : k ⩾ 2) is i.i.d.
, distributed identically to (Xk : k ⩾ 2), and independent of Ye

s . To this end, we consider the function t 7→
ft ≜ P

(
{Ye

t > y} ∩n
k=2

{
XNe

t +k ⩽ xk

})
. Defining the kernel functions t 7→ k1

t ≜ P
(
{Ye

t > y,S1 > t} ∩n
k=2{

XNe
t +k ⩽ xk

})
= F̄e(t + y)∏n

k=2 F(xk), and t 7→ k2
t ≜ P

({
Ye

S1+t > y, t < X2

}
∩n

k=2

{
XNe

S1+t+k ⩽ xk

})
=

F̄(t + y)∏n
k=2 F(xk). We can write the renewal function f = k1 + k2 ∗ me to obtain

P
(
{Ye

t > y} ∩n
k=2

{
XNe

t +k ⩽ xk

})
= F̄e(y)

n

∏
k=2

F(xk).

Example 1.7 (Poisson process). Consider the case, when inter-renewal time distribution F for a delay
renewal process is exponential with rate λ. Here, one would expect the equilibrium distribution Fe = F,
since Poisson process has stationary and independent increments. We observe that

Fe(x) =
1
µ

∫ x

0
F̄(y)dy = λ

∫ x

0
e−λydy = 1 − e−λx = F(x).

We see that Fe is also distributed exponentially with rate λ. Indeed, this is a Poisson process with rate
λ.

2 Renewal reward process

Definition 2.1. Consider a counting process N : Ω → Z
R+
+ associated with renewal sequence S : Ω →

RN
+ , where the i.i.d. inter-renewal time sequence is denoted by X : Ω →RN

+ having common distribution
F. At the end of each renewal interval n ∈ N, a random reward Rn : Ω → R is earned at time Sn, where
the reward Rn is possibly dependent on the duration Xn. Let (X, R) : Ω → (R+ ×R)N be i.i.d. , then the
reward process Q : Ω → RR+ is defined as the accumulated reward earned by time t as Qt ≜ ∑Nt

i=1 Ri.

Example 2.2. Consider a renewal sequence S : Ω → R+N with i.i.d. inter-renewal time sequence X :
Ω → RN

+ . Consider an i.i.d. renewal sequence R : Ω → RN
+ defined as Rn ≜ 1 for all n ∈ N. Then the

reward process Q : Ω → Z
R+
+ is the same as the counting process N : Ω → Z

R+
+ associated with the

renewal sequence S.

Example 2.3. Consider a renewal sequence S : Ω → R+N with i.i.d. inter-renewal time sequence X :
Ω → RN

+ . Consider an i.i.d. renewal sequence R : Ω → RN
+ defined as Rn ≜ Xn for all n ∈ N. Then the

reward process Q : Ω → Z
R+
+ is the last renewal instant Qt = SNt for all times t ∈ R+.
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t

Qt

S1 S2 SNt t SNt+1

R1

∑2
i=1 Ri

∑Nt
i=1 Ri

∑Nt+1
i=1 Ri

Theorem 2.4 (renewal reward). Consider a renewal reward process Q : Ω → RR+ with associated i.i.d. re-
newal reward sequence (X, R) : Ω → (R+ × R)N where the mean of absolute value of reward E |R1| and mean
of absolute value of renewal duration E |X1| are finite. Then the empirical average of reward converges, almost
surely and in mean, i.e.

lim
t→∞

Qt

t
=

ER1

EX1
a.s. , lim

t→∞

EQt

t
=

ER1

EX1
.

Proof. We can write the rate of accumulated reward as Qt
t =

(
Qt
Nt

)(
Nt
t

)
. From the strong law of large

numbers we obtain that, limt→∞
1

Nt
∑Nt

i=1 Ri = ER1, and from the strong law for counting processes we

have limt→∞
Nt
t = 1

EX1
.

Since Nt + 1 is a stopping time for the renewal reward sequence ((X1, R1), (X2, R2), . . . ), it follows
from Wald’s lemma,

EQt = E
Nt

∑
i=1

Ri = E
Nt+1

∑
i=1

Ri − ERNt+1 = (mt + 1)ER1 − ERNt+1.

Defining t 7→ gt ≜ ERNt+1, using elementary renewal theorem, it suffices to show that limt→∞
gt
t = 0.

Observe that RNt+1 is a regenerative process with the regenerative sequence being the renewal instants
S, since the nth segment is ξn ≜ (Xn, Rn) and the sequence (X, R) is i.i.d. . Defining kernel function
t 7→ Kt ≜ E[RNt+11{X1>t}], we can write the renewal function for g as

gt = E[RNt+11{X1>t}] + E[RNt+11{X1⩽t}] = Kt +
∫ t

0
gt−udF(u).

Using the solution to renewal function, we can write g = (1+m) ∗K in terms of renewal function m and
kernel function K. Using the conditional Jensen’s inequality for convex function absolute, we observe
that the kernel function K : R+ → R+ is bounded above as

Kt ≜ E[RNt+11{X1>t}] = E[E[R11{X1>t} | σ(X1)]]⩽ E[E[|R1|1{X1>t} | σ(X1)]]

From finiteness of E|R|, it follows that limt→∞ Kt = 0, and we can choose T such that |Ku| ⩽ ϵ for all
u ⩾ T. Hence, for all t ⩾ T, we have

|gt|
t

⩽
|Kt|

t
+

∫ t−T

0

|Kt−u|
t

dmu +
∫ t

t−T

|Kt−u|
t

dmu ⩽
ϵ

t
+

ϵmt−T
t

+ E |R1|
(mt − mt−T)

t
.

Taking limits and applying elementary renewal and Blackwell’s theorem, we get limsupt→∞
|gt |

t ⩽ ϵ
EX1

.
The result follows since ϵ > 0 was arbitrary.

Corollary 2.5. Renewal reward theorem applies to a reward process Q that accrues positive reward contin-
uously over a renewal duration. The total reward in a renewal duration Xn remains Rn as before, with the
sequence(X, R) : Ω → (R+ × R)N being i.i.d. .
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Proof. Let the process t 7→ Qt denote the accumulated reward until time t, when the reward accrual is
continuous in time. Defining Rn ≜ QSn − QSn−1 > 0, it follows that

∑Nt
n=1 Rn

t
⩽

Qt

t
⩽

∑Nt+1
n=1 Rn

t
.

First result follows from application of strong law of large numbers. For the second result, we have

(mt + 1)ER1 − ERNt+1

t
⩽

EQt

t
⩽

(mt + 1)ER1

t
.

The second result follows from the fact that limt→∞
ERNt+1

t = 0.
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