
Lecture-14: Discrete Time Markov Chains

1 Introduction

We have seen that i.i.d. sequences are easiest discrete time processes. However, they don’t capture
correlation well. Hence, we look at the discrete time stochastic processes of the form

Xn+1 = f (Xn, Zn+1),

where Z : Ω → ZN is an i.i.d. sequence independent of initial state X0 ∈ X, and f : X × Z → X is a
measurable function. The set X is called the state space of discrete time process X : Ω → XZ+ . If
Xn = x ∈ X, then we say that the process X is in state x at time n.

Definition 1.1. For the discrete random process X : Ω → XZ+ , the history until time n is denoted by

Fn ≜ σ(X0, . . . , Xn).

The natural filtration of process X is denoted by F• ≜ (Fn : n ∈ Z+).

Remark 1. We observe that for a process of the form Xn+1 = f (Xn, Zn+1), the event space at time n is
Fn ⊆ σ(X0, Z1, . . . , Zn).

Definition 1.2. A discrete random process X : Ω → XZ+ adapted to its natural filtration F• is said to
have the Markov property if

P({Xn+1 ⩽ x}
∣∣ Fn) = P({Xn+1 ⩽ x}

∣∣ σ(Xn)), n ∈ Z+.

Definition 1.3. For a countable set X, a stochastic process X : Ω →∈ XZ+ is called a discrete time
Markov chain (DTMC) if it satisfies the Markov property.

Remark 2. For a discrete Markov process X : Ω → XZ+ , we have

P({Xn+1 = y} |{Xn = x, Xn−1 = xn−1, . . . , X0 = x0}) = P({Xn+1 = y} |{Xn = x}),

for all non-negative integers n ∈ Z+ and all states x0, x1, . . . , xn−1, x,y ∈ X.

Definition 1.4. For a countable state space X, we define the set of probability measures on X as

M(X)≜

{
ν ∈ [0,1]X : ∑

x∈X
νx = 1

}
.

1.1 Homogeneous Markov chain

Definition 1.5. We can define the transition probability pxy(n) ≜ P({Xn+1 = y} |{Xn = x}), for each
time n ∈ Z+. When the transition probability does not depend on n, the DTMC is called homogeneous.
The matrix P ∈ [0,1]X×X is called the transition matrix.

Example 1.6 (Random walk on lattice). For the random i.i.d. step-size sequence Z : Ω → (Zd)N hav-
ing common probability mass function p ∈ [0,1]Z

d
, we denote the random particle location on a d-

dimensional lattice after n steps by Xn ∈ Zd defined at time n as Xn ≜ ∑n
i=1 Zi. We will show that X is a

homogeneous DTMC.
For a lattice point x ∈ Zd, we can write the conditional expectation

E[1{Xn=x}|Fn−1] = ∑
y∈Zd

E[1{Xn−1=x−y}1{Zn=y}|Fn−1] = ∑
y∈Zd

p(y)1{Xn−1=x−y} = E[1{Xn=x}|σ(Xn−1)].

Markov property of the random walk follows from the independence of random step-sizes. Homo-
geneity follows from the identical distribution of random step-sizes.
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Definition 1.7. If a non-negative matrix A ∈ RX×X
+ satisfies ∑y∈X axy ⩽ 1 for all x ∈ X, then A is called

a sub-stochastic matrix. If ∑y∈X axy = 1, then A is called a stochastic matrix. If A and AT are stochastic
matrices, then A is called doubly stochastic matrix.

Remark 3. Let 1 : X→ {1} be the all one vector. For a stochastic matrix, the all one column vector 1T is
a right eigenvector with eigenvalue unity, i.e. A1T = 1T .

Remark 4. The transition matrix P is stochastic matrix. Each row px ≜ (pxy : y ∈ X) ∈ M(X) of the
stochastic matrix P is a distribution on the state space X. In particular, px is the conditional distribution
of Xn+1 given Xn = x.

Remark 5. For a doubly stochastic matrix A, the all one row vector 1 is a right eigenvector and 1T is a
left eigenvector, both with eigenvalue unity. To see this we observe that 1AT = (A1T)T = 1.

1.2 Transition graph

Let E be the collection of ordered pairs of states (x,y) ∈ X×X such that pxy > 0. That is,

E ≜
{
(x,y) ∈ X×X : pxy > 0

}
.

We say that x is a neighbor of y, when (x,y) ∈ E and denote it by x ∼ y. The out and in degrees of a
vertex x ∈ X are defined as

degout(x)≜ |{y ∈ X : x ∼ y}| = ∑
y∈X

1{(x,y)∈E}, degin(x)≜ |{y ∈ X : y ∼ x}| = ∑
y∈X

1{(y,x)∈E}.

For each edge e ∈ E, we define the weight function w : E → [0,1] such that w(e) ≜ pxy for each edge
e = (x,y) ∈ E. We observe that for a fixed vertex x ∈ X, we have ∑e=(x,y)∈E w(e) = 1. Then a transition
matrix P can be represented by a directed edge-weighted graph G ≜ (X, E,w).

1.3 Random walks on graphs

Any homogeneous finite state Markov chain X : Ω → XZ+ can be thought of as a random walk on the
directed edge weighted transition graph G = (X, E,w). The location of a single particle on this graph
after n random steps is denoted by Xn : Ω → X, where particle can jump from one location to another if
it is connected by an edge and with the jump probability being equal to the edge weight. That is,

P({Xn+1 = y} |{Xn = x}) = w(x,y)1{(x,y)∈E}.

1.4 Chapman Kolmogorov equations

Let ν(n) ∈ M(X) denote the marginal distribution of the process X at time n ∈ Z+, i.e. νx(n) ≜
P{Xn = x} for all x ∈ X.

Definition 1.8. We can define n-step transition probabilities for a homogeneous Markov chain X : Ω →
XZ+ for states x,y ∈ X and non-negative integers m,n ∈ Z+ as

p(n)xy ≜ P({Xn+m = y} |{Xm = x}).

Remark 6. It follows from the Markov property and the law of total probability that p(m+n)
xy =∑z∈X p(m)

xz p(n)zy .
We can write this result compactly in terms of transition probability matrix P as P(n) = Pn.

Remark 7. We can write this vector ν(n) in terms of initial probability vector ν(0) and the transition
matrix P as ν(n) = ν(0)Pn.

Remark 8. Let f : X→ R be a vector then we define its inner product with a matrix P : X×X→ R as a
vector ⟨P, f ⟩ : X → R, where (P f )x ≜ ⟨px, f ⟩ = ∑y∈X pxy fy, for all x ∈ X. It follows that, we can write
(P f )x = E[ f (X1)| {X0 = x}] = Ex f (X1) for a time homogeneous discrete time Markov chain X : Ω →
XZ+ with transition probability matrix P.
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1.5 Strong Markov property (SMP)

Definition 1.9. Let τ : Ω → Z+ be an almost surely finite integer valued stopping time adapted to the
natural filtration F• of the stochastic process X : Ω → XZ+ . Then for all states x0, . . . , xn−1, x,y ∈ X, the
process X satisfies the strong Markov property if

P({Xτ+1 = y} |{Xτ = x, . . . , X0 = x0}) = pxy.

Lemma 1.10. Discrete time Markov chains satisfy the strong Markov property.

Proof. Let X be a Markov chain and an event A = {Xτ = x, . . . , X0 = x0} ∈ Fτ . Then, we have

P({Xτ+1 = y} ∩ A) = ∑
n∈Z+

P({Xτ+1 = y,τ = n} ∩ A) = ∑
n∈Z+

pxyP(A ∩ {τ = n}) = pxyP(A).

This equality follows from the fact that the event {τ = n} is completely determined by {X0, . . . , Xn}

Example 1.11 (Non-stopping time). As an exercise, if we try to use the Markov property on arbitrary
random variable τ, the SMP may not hold. Consider a Markov chain X : Ω →XZ+ with natural filtration
F•. We define a non-stopping time random variable τy : Ω → Z+ for some state y ∈ X

τy ≜ inf{n ∈ Z+ : Xn+1 = y} .

We can verify that τy is not a stopping time for the process X. From the definition of τy, we have
Xτy+1 = y, and for x ∈ X \ {y} such that pxy > 0

P
({

Xτy+1 = y
}
|
{

Xτy = x, . . . , X0 = x0

})
= 1 ̸= P({X1 = y} |{X0 = x}) = pxy.

Example 1.12 (Regeneration points of DTMC). Let x0 ∈ X be a fixed state and τ+
x0
(0) = 0. Let τ+

x0
(n)

denote the stopping times at which the Markov chain visits state x0 for the nth time. That is,

τ+
x0
(n)≜ inf

{
n > τ+

x0
(n − 1) : Xn = x0

}
.

Then (Xτ+x0+m : m ∈ Z+) is a stochastic replica of X with X0 = x0 and can be studied as a regenerative
process.

1.6 Random mapping representation

Proposition 1.13. Any homogeneous DTMC X : Ω → XZ+ on finite state space X has a random mapping
representation. That is, there exists an i.i.d. sequence Z : Ω → ZN and a measurable function f : X× Z → X

such that Xn = f (Xn−1, Zn) for each n ∈ N.

Proof. We can order any finite set, and hence we can assume the finite state space X = [n], with-
out any loss of generality. For ith row of the transition matrix P, we can define Fi,k ≜ ∑k

j=1 pij =

P({Xn+1 ⩽ k}
∣∣ {Xn = i}). We assume Z : Ω → [0,1]N to be a sequence of i.i.d. uniform random vari-

ables. We define a function f : [n]× [0,1]→ [n] for each i ∈ [n] and z∈ [0,1] as f (i,z)≜∑n
k=1 k1{Fi,k−1⩽z<Fi,k}.

To show that this choice of function f and i.i.d. sequence Z works, it suffices to show that pij =
P{ f (i, Zn) = j}. Indeed, we can write

P{ f (i, Zn) = j} = E1{ f (i,Zn)=j} = E1{Fi,j−1⩽Zn<Fi,j} = Fi,j − Fi,j−1 = pij.
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