
Lecture-15: Class Properties

1 Communicating classes

Definition 1.1. Let x,y ∈X. If p(n)xy > 0 for some n ∈ Z+, then we say that state y is accessible from state
x and denote it by x → y. If two states x,y ∈X are accessible to each other, they are said to communicate
with each other and denoted by x ↔ y. A set of states that communicate are called a communicating
class.

Definition 1.2. A relation R on a set X is a subset of X×X.

Definition 1.3. An equivalence relation R ⊆ X×X has following three properties.
Reflexivity: If x ∈ X, then (x, x) ∈ R.
Symmetry: If (x,y) ∈ R, then (y, x) ∈ R.
Transitivity: If (x,y), (y,z) ∈ R, then (x,z) ∈ R.

Remark 1. Equivalence relations partition a set X.

Proposition 1.4. Communication is an equivalence relation.

Proof. Reflexivity follows from zero-step transition, and symmetry follows from the definition of com-
municating class. For transitivity, suppose x ↔ y and y ↔ z. Then we can find m,n ∈ N such that
p(m)

xy > 0 and p(n)yz > 0. From Chapman Kolmogorov equations, we have m + n ∈ N such that p(m+n)
xz =

∑w∈Z+
p(m)

xw p(n)wz ⩾ p(m)
xy p(n)yz > 0.

1.1 Irreducibility and periodicity

A consequence of the previous result is that communicating classes are disjoint or identical.

Definition 1.5. A Markov chain with a single communicating class is called irreducible.

Definition 1.6. A class property is the one that is satisfied by all states in the communicating class.

Remark 2. We will see many examples of class properties. Once we have shown that a property is a
class property, then one only needs to check that one of the states in the communicating class has the
property for the entire class to have that.

Definition 1.7. We denote the set of recurrence times for a Markov chain with transition probability
matrix P : X×X→ [0,1] as Ax ≜

{
n ∈ N : p(n)xx > 0

}
.

Remark 3. If one can re-visit a state x in m and n steps, then also in m + n steps, since p(m+n)
xx ⩾ p(m)

xx p(n)xx .
It follows that set Ax is closed under addition for all x ∈ X.

Definition 1.8. The period of state x is defined as d(x)≜ gcd(Ax). If the period is 1, we say the state is
aperiodic.

Proposition 1.9. Periodicity is a class property.

Proof. We will show that for two communicating states x ↔ y, the periodicities are identical. We will
show that d(x)|d(y) and d(y)|d(x). We choose m,n ∈ N such that

p(m+n)
xx ⩾ p(m)

xy p(n)yx > 0, p(m+n)
yy ⩾ p(n)yx p(m)

xy > 0.

It follows that m + n ∈ Ax ∩ Ay. Let s ∈ Ax, then it follows that m + n + s ∈ Ay, since p(n+s+m)
yy ⩾

p(n)yx p(s)xx p(m)
xy > 0. Hence d(y)|n + m and d(y)|n + s + m which implies d(y)|s. Since the choice of s ∈ Ax

was arbitrary, it follows that d(y)|d(x). Similarly, we can show that d(x)|d(y).
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Example 1.10 (Random walk on a ring). Let G = (X, E) be a finite graph where X≜ {0, . . . ,n − 1} and
E = {(x, x + 1) : x ∈ X} where addition is modulo n. Let Z : Ω → {−1,1}N be a random i.i.d. sequence
of step-sizes with EZn = 2p − 1. We denote the location of particle after n random steps by Xn ≜
X0 + ∑n

i=1 Zi. It follows that the random walk X : Ω → XN is an irreducible homogeneous Markov
chain with period 2 if n is even. The Markov chain X is aperiodic if n is odd.

Proposition 1.11. If a Markov chain X : Ω → XZ+ on a finite state space X is irreducible and aperiodic, then
there exists an integer n0 such that p(n)xy > 0 for all x,y ∈ X and n ⩾ n0.

Proof. Since periodicity is a class property, it follows that gcd(Ax) = 1 for all states x ∈ X. Further,
we have mx ∈ Ax such that n ∈ Ax for all n ⩾ mx. Further for any pair of states x,y ∈ X, we can find

nxy ∈ N such that p
(nxy)
xy > 0 from the irreducibility of the Markov chain. It follows that p(n)xy > 0 for all

n ⩾ nxy + my ∈ N. Since the state space X is finite, we have a finite n0 ≜ supx∈X mx + supx,y∈X nxy ∈ N

such that p(n)xy > 0 for any state x,y ∈ X for all n ⩾ a.

2 Transient and recurrent states

2.1 Hitting and return times

Definition 2.1. For a homogeneous Markov chain X : Ω → XZ+ , we can define the first hitting time to
state x ∈ X, as τ+

x ≜ inf{n ∈ N : Xn = x} . If X0 = x, then τ+
x is called the first return time to state x.

Lemma 2.2. For an irreducible Markov chain X : Ω → XZ+ on finite state space X, we have Exτ+
y < ∞ for all

states x,y ∈ X.

Proof. From the definition of irreducibility, for each pair of states z,w ∈ X, we have a positive integer
nzw ∈ N such that pnzw

zw > ϵzw > 0. Since the state space X is finite, we define ϵ ≜ infz,w∈X ϵzw > 0 and

r ≜ supz,w∈X nzw ∈ N. Hence, there exists a positive integer r ∈ N and a real ϵ > 0 such that p(n)zw > ϵ for

some n ⩽ r and all states z,w ∈ X. It follows that Pz(∪n∈[r] {Xn = y})> ϵ or Pz

{
τ+

y > r
}
< 1− ϵ for any

initial condition X0 = z ∈ X and state y ∈ X.
Fix k ∈ N. We observe that

{
τ+

y > kr
}
= ∪z ̸=y

{
τ+

y > kr,τ+
y > (k − 1)r, X(k−1)r = z

}
. Therefore,

Px

{
τ+

y > kr
}
= ∑

z ̸=y
Px

{
τ+

y > (k − 1)r, X(k−1)r = z
}

P
({

τ+
y > kr

}
|
{

X(k−1)r = z,τ+
y > (k − 1)r, X0 = x

})
.

We observe that
{

X(k−1)r = z,τ+
y > (k − 1)r, X0 = x

}
∈ F(k−1)r for all z ̸= y. From the Markov property

and the time homogeneity of X, we can write

P(
{

τ+
y > kr

}
|
{

X(k−1)r = z,τ+
y > (k − 1)r, X0 = x

}
) = P(

{
τ+

y > kr
}
|
{

X(k−1)r = z
}
) = Pz

{
τ+

y > r
}
< (1− ϵ).

It follows that Px

{
τ+

y > kr
}
< Px

{
τ+

y > (k − 1)r
}
(1 − ϵ). By induction, we have Px

{
τ+

y > kr
}
< (1 −

ϵ)k. Since Px

{
τ+

y > n
}

is decreasing in n, we can write

Exτ+
y = ∑

k∈Z+

r−1

∑
i=0

Px

{
τ+

y > kr + i
}
⩽ ∑

k∈Z+

rPx

{
τ+

y > kr
}
<

r
ϵ
< ∞.

Corollary 2.3. For an irreducible Markov chain X : Ω →XZ+ on finite state space X, we have Px

{
τ+

y < ∞
}
= 1

for all states x,y ∈ X.

Proof. This follows from the fact that τ+
y is a positive random variable with finite mean for all states

y ∈ X and any initial state x ∈ X.
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2.2 Recurrence and transience

Definition 2.4. We denote the probability of the first transition into state y at time n from the initial
state x by f (n)xy ≜ Px

{
τ+

y = n
}

. The probability of eventually entering state y from the initial state x is

denoted by fxy ≜ Px

{
τ+

y < ∞
}
= ∑∞

n=1 f (n)xy .

Definition 2.5. A state y is said to be transient if fyy < 1, recurrent if fyy = 1, and positive recurrent if
Eyτ+

y < ∞.

Definition 2.6. For a discrete time process X : Ω → XZ+ , the total number of visits to a state y ∈ X in
first n steps is denoted by Ny(n)≜ ∑n

i=11{Xi=y}. The total number of visits to state y ∈ X is denoted by
Ny ≜ Ny(∞).

Remark 4. From the linearity of expectations and monotone convergence theorem, we get EyNy =

∑n∈N p(n)yy .

Lemma 2.7. Consider a time homogeneous Markov chain X : Ω → XZ+ . For each m ∈ Z+ and state x,y ∈ X,
we have

Px
{

Ny = m
}
=

{
1 − fxy m = 0,
fxy f m−1

yy (1 − fyy) m ∈ N.

Proof. We can write the following equality{
Ny = m

}
=

{
τ+

y (m) < ∞,τ+
y (m + 1) = ∞

}
=∩m

k=1

{
τ+

y (k)− τ+
y (k − 1) < ∞

}
∩
{

τ+
y (m + 1)− τ+

y (m) = ∞
}

.

For each k ∈ N, the kth hitting time τ+
y (k) to the state y is adapted to the natural filtration F• of the

process X. From strong Markov property, the next return to state y is independent of the past. That is,
(τ+

y (k) : k ∈ N) is a delayed renewal sequence for initial state X0 = x ̸= y. It follows that

Px
{

Ny = m
}
= Px

{
τ+

y (1) < ∞
} m

∏
k=2

Py

{
τ+

y (k)− τ+
y (k − 1) < ∞

}
Py

{
τ+

y (m + 1) = ∞
}

.

Corollary 2.8. For a homogeneous Markov chain X : Ω → XZ+ , we have

Py
{

Ny < ∞
}
= 1{ fyy<1}, EyNy =

fyy

1 − fyy
.

Proof. From the additivity of probability of disjoint events and the expression for the conditional prob-
ability mass function Py

{
Ny = m

}
in Lemma 2.7, we obtain

Py
{

Ny < ∞
}
= ∑

m∈Z+

Py
{

Ny = m
}
= (1 − fyy) ∑

n∈Z+

f m
yy = 1{ fyy<1}.

Similarly, can compute the mean EyNy using the conditional distribution of Ny given initial state y.

Remark 5. In particular, this corollary implies the following.

1. A transient state is visited a finite amount of times almost surely.

2. A recurrent state is visited infinitely often almost surely.

3. Since ∑y∈X Ny = ∞, it follows that not all states can be transient in a finite state Markov chain.

Proposition 2.9. A state y ∈ X is recurrent iff ∑k∈N p(k)yy = ∞.

Proof. For any state y ∈ X, we can write p(k)yy = Py {Xk = y} = Ey1{Xk=y}. Using monotone convergence

theorem to exchange expectation and summation, we obtain ∑k∈N p(k)yy = Ey ∑k∈N1{Xk=y} = EyNy.

Thus, ∑k∈N p(k)yy represents the expected number of returns EyNy to a state y starting from state y,
which we know to be finite if the state is transient and infinite if the state is recurrent.
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Proposition 2.10. Transience and recurrence are class properties.

Proof. Let x ↔ y. Then from the reachability, there exist some m,n > 0, such that p(m)
xy > 0 and p(n)yx > 0.

Let x be a recurrent state, then ∑s∈Z+
p(s)xx = ∞. We show that ∑k∈Z+

p(k)yy = ∞, by observing

∑
k∈Z+

p(k)yy ⩾ ∑
s∈Z+

p(m+n+s)
yy ⩾ ∑

s∈Z+

p(n)yx p(s)xx p(m)
xy = ∞.

Let x be a transient state, then ∑s∈Z+
p(s)xx < ∞. We show that ∑k∈Z+

p(k)yy < ∞, by observing

∑
k∈Z+

p(k)yy ⩽
∑k∈Z+

p(m+n+k)
xx

p(n)yx p(m)
xy

⩽
∑s∈Z+

p(s)xx

p(n)yx p(m)
xy

< ∞.

Exercise 2.11. If y is recurrent and x such that x ↔ y, then show that fxy = 1.

A Bézout’s identity

Lemma A.1 (Bézout). Consider a vector a∈ (Z\ {0})n with gcd d, and define the set S≜ {⟨a, x⟩ : x ∈ Zn, ⟨a, x⟩ > 0}.
Then d is the smallest element of set S and d|s for all s ∈ S.

Proof. Let I ⊆ {i ∈ [n] : ai > 0}, then x ∈ {−1,1}n defined as xi = 1 for i ∈ I and xi =−1 for i /∈ I ensures
that ⟨a, x⟩ = ∑n

i=1 |a|i > 0. It follows that S is non-empty. Let g = ⟨a, x⟩ be the minimum element of S.
First, we show that g|ai for all i ∈ [n]. Let 0 < ri < g be the reminder when g divides ai. Then, we

can write ri = ai − gvi for some vi ∈ Z+. Therefore, ri = ∑j ̸=i −xjviaj + (1 − vixi)ai ∈ S. However, this
is a contraction since g is the smallest element of S, and the result follows.

Second, we show that if any c ∈ Z+ such that c|ai for all i ∈ [n], then c|g and hence g = d. Since
g = ⟨a, x⟩, this implies that c|g and the result follows.

Further, any s ∈ S can be written as s = ⟨a,z⟩ and d|ai for all i ∈ [n] and hence d|s.

Lemma A.2. If A is a set closed under addition and gcd(A) = 1, then there exists m0 ∈ A such that m ∈ A for
all m ⩾ m0.

Proof. Let A be a set generated by positive integers a≜ (a1, a2, . . . , an) such that A=
{
⟨a, x⟩ : x ∈ ZN

+ , x ̸= 0
}

.
Let g be the smallest element in A. If g = 1, then A = N and there is nothing to prove. We consider the
case when g > 1. From Bézout’s Lemma, there exists v ∈ Zn such that 1 = ⟨a,v⟩. Since 1 /∈ A, it implies
that there exists a non-empty subset I ≜ {i ∈ [n] : vi < 0}. We define

c1 ≜ ∑
i/∈I

viai ∈ A, c2 ≜ ∑
i∈I

−viai ∈ A.

We observe that c1 − c2 = 1. Since 1 /∈ A, both c1, c2 > 1. Let m0 = c2
2, then for any m ⩾ m0, we can write

m = kc2 + ℓ where the remainder 0 ⩽ ℓ < c2. We can write c2
2 ⩽ m = kc2 + ℓ < (k + 1)c2. Since c2 > 0,

this implies that k > c2 − 1 ⩾ ℓ. Thus, we can write

m = kc2 + ℓ = kc2 + ℓ(c1 − c2) = (k − ℓ)c2 + ℓc1 ∈ A.

4


	Communicating classes
	Irreducibility and periodicity

	Transient and recurrent states
	Hitting and return times
	Recurrence and transience

	Bézout's identity

