
Lecture-16: Invariant Distribution

1 Invariant distribution

Definition 1.1. For a time-homogeneous Markov chain X : Ω → XZ+ with transition matrix P, a distri-
bution π ∈M(X) is called invariant if it is a left eigenvector of the probability transition matrix P with
eigenvalue unity, or

π = πP.

Remark 1. Recall that ν(n) ∈ M(X) where νx(n) = P{Xn = x} for all x ∈ X, denotes the probability
distribution of the Markov chain X being in one of the states at step n ∈ N. Then, if ν(0) = π, then
ν(n) = ν(0)Pn = π for all time-steps n ∈ N.

Definition 1.2. For a time-homogeneous Markov chain X : Ω → XZ+ with transition matrix P, the
stationary distribution is defined as ν(∞)≜ limn→∞ ν(n).

Remark 2. For a Markov chain with initial distribution being invariant, the stationary distribution is
invariant distribution.

Example 1.3 (Simple random walk on a directed graph). Let G = (X, E) be a finite directed graph.
We define a simple random walk on this graph as a Markov chain with state space X and transition
matrix P : X× X → [0,1] where pxy ≜ 1

degin(x)1{(x,y)∈E}. We observe that vector (degin(x) : x ∈ X) is a
left eigenvector of the transition matrix P with unit eigenvalue. Indeed we can very that

∑
x∈X

degin(x)pxy = ∑
x∈X

1{(x,y)∈E} = degin(y).

Since ∑x∈X degin(x) = 2|E|, it follows that π : X→ [0,1] defined by πx ≜
degin(x)

2|E| for each x ∈ X, is the
equilibrium distribution of this simple random walk.

1.1 Existence of an invariant distribution

Proposition 1.4. Consider an irreducible and aperiodic homogeneous DTMC X : Ω → XZ+ with transition
matrix P and starting from initial state X0 = x. Let the positive vector π̃x : X → R+ defined as π̃x(y) ≜
Ex Ny(τ+

x ) for all y ∈ X. Then the following statements hold true.
(a) If x is recurrent, then π̃x is a left eigenvector of P with eigenvalue unity. That is, π̃x = π̃xP.
(b) If x is positive recurrent, then π ≜ π̃x

Exτ+x
is an invariant distribution of P.

Proof. (a) We first show that π̃x is a left eigenvector for the transition probability matrix P for time
homogeneous DTMC X. Recall that Ny(τ+

x ) = ∑n∈N1{n⩽τ+x }1{Xn=y} and pwz = P({Xn+1 = z} |
{Xn = w}). Using the monotone convergence theorem, we can write

∑
w∈X

π̃x(w)pwz = ∑
w∈X

∑
n∈N

Px
{

τ+
x ⩾ n, Xn = w

}
P({Xn+1 = z} | {Xn = w}).

We first focus on the term w = x. We see that {Xn = x,τ+
x ⩾ n}= {τ+

x = n} and hence for a recurrent
state x, we have

π̃x(x)pxz = pxz ∑
n∈N

Px
{

τ+
x = n

}
= pxzPx

{
τ+

x < ∞
}
= pxz.
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We next focus on the terms w ̸= x. We observe that {Xn = w,τ+
x ⩾ n}= {Xn = w,τ+

x ⩾ n + 1} ∈ Fn.
From the Markov property for X, we have

pwz = P({Xn+1 = z} | {Xn = w}) = P({Xn+1 = z} |
{

Xn = w,τ+
x ⩾ n + 1, X0 = x

}
).

Therefore, from the definition of conditional probability, we obtain pwzPx {Xn = w,τ+
x ⩾ n + 1, X0 = x}=

Px {Xn+1 = z, Xn = w,τ+
x ⩾ n + 1}, and hence

∑
w ̸=x

π̃x(w)pwz = ∑
n∈N

∑
w ̸=x

Px
{

Xn = w, Xn+1 = z,τ+
x ⩾ n + 1

}
= ∑

n∈N

Px
{

Xn+1 = z,τ+
x ⩾ n + 1

}
= π̃x(z)− Px

{
X1 = z,τ+

x ⩾ 1
}
= π̃x(z)− pxz.

The result follows from summing both the cases.
(b) For a positive recurrent state x, it suffices to show that π is a distribution on state space X. Recall

that π̃x(y) = Ex Ny(τ+
x ) and ∑y∈X Ny(τ+

x ) = τ+
x , it follows from the monotone convergence theorem

that
∑

y∈X
π̃x(y) = Ex ∑

y∈X
Ny(τ

+
x ) = Exτ+

x < ∞.

Thus 0 ⩽ π̃x(y) ⩽ Exτ+
x for all states y ∈ X. Further, Nx(τ+

x ) = 1 and hence π̃x(x) = 1. It follows
that π̃x

Exτ+x
is a distribution on the state space X.

1.2 Uniqueness of the invariant distribution

Definition 1.5. Consider a time homogeneous Markov chain X : Ω → XZ+ with transition probabil-
ity matrix P ∈ [0,1]X×X. A function h : X → R is called harmonic at x if h(x) = Exh(X1) = (Ph)x =
∑y∈X pxyh(y). A function is harmonic on a subset D ⊂ X if it is harmonic at every state x ∈ D.

Lemma 1.6. For a finite state irreducible Markov chain, a function f harmonic on all states in X is a constant.

Proof. Suppose h is not a constant, then there exists a state x ∈ X, such that h(x) ⩾ h(y) for all states
y ∈ X. Since the Markov chain is irreducible, there exists a state z ∈ X such that pxz > 0. Let’s assume
h(z) < h(x), then

h(x) = pxzh(z) + ∑
y ̸=z

pxyh(y) < h(x).

This implies that h(x) = h(z) for all states z such that pxz > 0. By induction, this implies that h(x) = h(y)
for any state y reachable from state x. Since all states are reachable from state x by irreducibility, this
implies h is a constant on the state space X.

Corollary 1.7. For any irreducible and aperiodic finite state Markov chain, there exists a unique invariant dis-
tribution π.

Proof. For an aperiodic and irreducible DTMC X : Ω →XZ+ with finite state space X, we have Exτ+
y < ∞

for all states x,y ∈ X. In particular, X is positive recurrent and hence there exists a positive invariant
distribution π. Further, from previous Lemma we have that the dimension of null-space of (P − I) is
unity. Hence, the rank of P − I is |X| − 1. Therefore, all vectors satisfying ν = νP are scalar multiples of
π.

1.3 Stationary distribution for irreducible and aperiodic finite DTMC

Theorem 1.8. For a finite state irreducible and aperiodic Markov chain X : Ω → XZ+ , its invariant distribution
is same as its stationary distribution.

Proof. For a finite state irreducible and aperiodic DTMC X : Ω → XZ+ , we have Exτ+
y < ∞ and hence

Px

{
τ+

y < ∞
}
= 1 for all x,y ∈ X. That is, the return times are finite almost surely, and hence we can

apply strong Markov property at these stopping times to obtain that DTMC X is a regenerative process
with delayed renewal sequence τ+

y : Ω→NN, where τ+
y (0)≜ 0, and τ+

y (n)≜ inf
{

m > τ+
y (n − 1) : Xm = y

}
.

We can create an on-off alternating renewal function on this DTMC X, which is ON when in state y.
Then, from the limiting ON probability of alternating renewal function, we know that

π(y)≜ lim
n→∞

Px {Xn = y} = lim
n→∞

1
n

n

∑
k=1

1{Xk=y} =
1

Eyτ+
y

.
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We observe that π(y) = π̃y(y)
Eyτ+y

for each state y ∈ X. From the uniqueness of invariant distribution, it

follows that π is the unique invariant distribution of the DTMC X. We observe that π(x) is the long-
term average of the amount of time spent in state x and from renewal reward theorem π(x) = 1

Exτ+x
.
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