Lecture-17: Continuous Time Markov Chains

1 Markov Process

Definition 1.1. Consider a real-valued stochastic process $X : \Omega \to \mathcal{X}^{\mathbb{R}_+}$ indexed by positive reals and state space \mathcal{X} , adapted to its natural filtration $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+)$ where $\mathcal{F}_t \triangleq \sigma(X_s, s \leqslant t)$ for all $t \in \mathbb{R}_+$. Then, X is a **Markov process** if it satisfies the Markov property. That is, for any Borel measurable set $A \in \mathcal{B}(\mathcal{X})$, the distribution of the future states conditioned on the present, is independent of the past, and

$$P(\lbrace X_t \in A \rbrace \mid \mathcal{F}_s) = P(\lbrace X_t \in A \rbrace \mid \sigma(X_s)), \text{ for all } s \leqslant t \in \mathbb{R}_+.$$

Definition 1.2. A Markov process $X : \Omega \to \mathcal{X}^{\mathbb{R}_+}$ with countable state space \mathcal{X} is called **continuous time Markov chain (CTMC)**.

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times $0 < t_1 < \cdots < t_m < t$ and states $x_1, \dots, x_m, y \in \mathcal{X}$, we have

$$P(\{X_t = y\} \mid \cap_{k=1}^m \{X_{t_k} = x_k\}) = P(\{X_t = y\} \mid \{X_{t_m} = x_m\}).$$

Example 1.3 (Counting process). Any simple counting process $N: \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ with independent increments is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC. Countability of the state space is clear from the definition of the counting process. For Markov property, we observe that for t > s, the increment $N_t - N_s$ is independent of \mathcal{F}_s . Let $\mathcal{F}_{\bullet} = (\mathcal{F}_t : t \in \mathbb{R}_+)$ be the natural filtration for process N, then

$$\mathbb{E}[\mathbb{1}_{\{N_t=j\}}\mid \mathcal{F}_s] = \sum_{i\in\mathbb{Z}_+} \mathbb{E}[\mathbb{1}_{\{N_t=j,N_s=i\}}\mid \mathcal{F}_s] = \sum_{i\in\mathbb{Z}_+} \mathbb{1}_{\{N_s=i\}} \mathbb{E}\mathbb{1}_{\{N_t=N_s=j-i\}} = \mathbb{E}[\mathbb{1}_{\{N_t=j\}}\mid \sigma(N_s)].$$

1.1 Transition probability kernel

Definition 1.4. We define the **transition probability** from state x at time s to state y at time t + s as

$$P_{xy}(s,s+t) \triangleq P(\{X_{s+t}=y\} \mid \{X_s=x\}).$$

Definition 1.5. The Markov process has **homogeneous** transitions for all states $x, y \in X$ and all times $s, t \in \mathbb{R}_+$, if

$$P_{xy}(t) \triangleq P_{xy}(0,t) = P_{xy}(s,s+t).$$

We denote the **transition probability kernel/function** at time t by $P(t) \triangleq (P_{xy}(t) : x, y \in X)$.

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump transition probabilities. We will assume that the sample path of the process X is right continuous with left limits at each time $t \in \mathbb{R}_+$.

Remark 3. Conditioned on the initial state of the process is x, we denote the conditional probability for any event $A \in \mathcal{F}$ as $P_x(A) \triangleq P(A \mid \{X_0 = x\})$ and the conditional expectation for any random variable $Y : \Omega \to \mathbb{R}$ as $\mathbb{E}_x Y \triangleq \mathbb{E}[Y \mid \{X_0 = x\}]$.

Lemma 1.6 (Stochasticity). Transition kernel $P: \mathbb{R}_+ \to [0,1]^{\mathcal{X} \times \mathcal{X}}$ at each time $t \in \mathbb{R}_+$ is a stochastic matrix.

Proof. From the countable partition of the state space \mathfrak{X} , we can write $1 = P_x(\{X_t \in \mathfrak{X}\}) = \sum_{y \in \mathfrak{X}} P_{xy}(t)$ for any state $x \in \mathfrak{X}$.

Lemma 1.7 (Semigroup property). Transition probability kernel $P : \mathbb{R}_+ \to [0,1]^{X \times X}$ satisfies the semigroup property, i.e. P(s+t) = P(s)P(t) for all $s,t \in \mathbb{R}_+$.

Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write

$$P_{xy}(s+t) = P_{xy}(0,s+t) = \sum_{z \in \mathcal{X}} P_{xz}(0,s) P_{zy}(s,s+t) = \sum_{z \in \mathcal{X}} P_{xz}(0,s) P_{zy}(0,t) = [P(s)P(t)]_{xy}.$$

Lemma 1.8 (Continuity). Transition probability kernel $P : \mathbb{R}_+ \to [0,1]^{\mathcal{X} \times \mathcal{X}}$ for a homogeneous CTMC $X : \Omega \to \mathcal{X}^{\mathbb{R}_+}$ is a continuous function of time $t \in \mathbb{R}_+$, such that $\lim_{t \downarrow 0} P(t) = I$, the identity matrix.

Proof. We will first show the continuity of transition kernel at time t = 0. From right continuity of sample paths for process X, we have $\lim_{t\downarrow 0} X_t = X_0$ and from continuity of probability functions we get $\lim_{t\downarrow 0} P_x \{X_t = y\} = P_x \{\lim_{t\downarrow 0} X_t = y\} = I_{xy}$.

Fix a time $t \in \mathbb{R}_+$, to write the difference P(t+h) - P(t) = P(t)(P(h) - I) using the semigroup property of the transition kernel. The continuity of transition kernel at time t = 0, and boundedness of P(t) implies continuity of P(t) at all times $t \in \mathbb{R}_+$.

Remark 4. Consider a time-homogeneous CTMC $X: \Omega \to \mathcal{X}^{\mathbb{R}_+}$ with transition kernel $P: \mathbb{R}_+ \to [0,1]^{\mathcal{X} \times \mathcal{X}}$. Then, for all times $0 < t_1 < \dots < t_m$ and states $x_0, x_1, \dots, x_m \in \mathcal{X}$, we have

$$P(\bigcap_{k=1}^{m} \{X_{t_k} = x_k\} | \{X_0 = x_0\}) = P_{x_0x_1}(t_1)P_{x_1x_2}(t_2 - t_1)\dots P_{x_{m-1}x_m}(t_m - t_{m-1}).$$

If the initial distribution is $\nu_0 \in \mathcal{M}(\mathfrak{X})$ such that $\nu_0(x) = P\{X_0 = x\}$ for each $x \in \mathfrak{X}$, then we observe that all finite dimensional distributions of the CTMC X are governed by the initial distribution ν_0 and the transition probability kernel P. That is,

$$P\Big(\cap_{k=1}^{m} \{X_{t_k} = x_k\}\Big) = \sum_{x_0 \in \mathcal{X}} \nu_0(x_0) P_{x_0 x_1}(t_1) \dots P_{x_{m-1} x_m}(t_m - t_{m-1}).$$

1.2 Strong Markov property

Lemma 1.9. A continuous time Markov chain $X : \Omega \to \mathfrak{X}^{\mathbb{R}_+}$ has the strong Markov property.

Proof. It follows from the right continuity of the CTMC process X, and the fact that the map $t \mapsto \mathbb{E}[f(X_{t+s}) \mid \sigma(X_t)]$ is right-continuous for any bounded continuous function $f: \mathcal{X} \to \mathbb{R}$. To see the right continuity of the map, we observe that

$$\mathbb{E}[f(X_{t+s}) \mid \sigma(X_t)] = \sum_{x \in \mathcal{X}} \mathbb{1}_{\{X_t = x\}} \sum_{y \in \mathcal{X}} P_{xy}(s) f(y).$$

Right-continuity of the map follows from the right continuity of the sample paths of process X, right-continuity and boundedness of the kernel function, and boundedness and continuity of f, and bounded convergence theorem.

Corollary 1.10. A pure jump CTMC X satisfies the following strong Markov property. For any stopping time τ adapted to the natural filtration of X, finite $m \in \mathbb{N}$, finite times $0 < t_1 < \cdots < t_m$, any event $H \in \mathcal{F}_{\tau}$, and states $x_0, x_1, \ldots, x_m \in \mathcal{X}$, we have

$$P(\cap_{k=1}^{m} \{X_{t_k+\tau} = x_k\} \mid H \cap \{X_{\tau} = x_0\}) = P_{x_0}(\cap_{k=1}^{m} \{X_{t_k} = x_k\}).$$

Remark 5. In particular, for a pure-jump time-homogeneous CTMC X, stopping time τ , and event $H \in \mathcal{F}_{\tau}$, we have

$$P(\{X_{\tau+s}=y\} | \{X_{\tau}=x\} \cap H) = P_{xy}(s).$$

1.3 Generator Matrix

Definition 1.11 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity, we can define $e^A \triangleq I + \sum_{n \in \mathbb{N}} \frac{A^n}{n!}$.

Lemma 1.12. For a homogeneous CTMC, we can write the transition kernel $P(t) = e^{tQ}$ for all $t \in \mathbb{R}_+$ in terms of a constant matrix $e^Q \triangleq P(1)$.

Proof. This follows from the semigroup property and the continuity of transition kernel P(t). In particular, we notice that $P(n) = P(1)^n$ and $P(\frac{1}{m}) = P(1)^{\frac{1}{m}}$ for all $m, n \in \mathbb{N}$. Since, any rational number $q \in \mathbb{Q}$ can be expressed as a ratio of integers with no common divisor, we get

$$P(q) = P(1)^q$$
, $q \in \mathbb{Q}$.

Since the rationals are dense in reals and P is a continuous function, it follows that $P(t) = P(1)^t$ for all $t \in \mathbb{R}_+$ and the result follows from the definition of Q such that $e^Q = P(1)$.

Remark 6. From Lemma **??** for a homogeneous CTMC $X:\Omega\to \mathfrak{X}^{\mathbb{R}_+}$, we can write the probability transition kernel function $t\mapsto P(t)=e^{tQ}$, where $e^Q=P(1)$. The matrix $Q\in\mathbb{R}^{\mathcal{X}\times\mathcal{X}}$ is called the generator matrix for the homogeneous CTMC X. From the Definition **??** for the exponentiation of matrix, this implies that

$$P(t) = I + \sum_{n \in \mathbb{N}} \frac{t^n}{n!} Q^n, \quad t \in \mathbb{R}_+.$$
 (1)

This relation implies that the probability transition kernel can be written in terms of this fundamental generator matrix *Q*.

Definition 1.13 (Generator matrix). For a homogeneous continuous time Markov chain $X: \Omega \to \mathcal{X}^{\mathbb{R}_+}$ with transition kernel function $P: \mathbb{R}_+ \to [0,1]^{\mathcal{X} \times \mathcal{X}}$, the **generator matrix** $Q \in \mathbb{R}^{\mathcal{X} \times \mathcal{X}}$ is defined as the following limit when it exists

$$Q \triangleq \lim_{t \downarrow 0} \frac{P(t) - I}{t}.$$

Remark 7. From Eq. (??), it is clear that the generator matrix is the limit defined above.

Remark 8. From the semigroup property of probability kernel function and definition of generator matrix, we get the backward equation

$$\frac{dP(t)}{dt} = \lim_{s \downarrow 0} \frac{P(s+t) - P(t)}{s} = \lim_{s \downarrow 0} \frac{(P(s) - I)}{s} P(t) = QP(t), \quad t \in \mathbb{R}_+.$$

Similarly, we can also get the forward equation

$$\frac{dP(t)}{dt} = \lim_{s \downarrow 0} \frac{P(s+t) - P(t)}{s} = P(t) \lim_{s \downarrow 0} \frac{(P(s) - I)}{s} = P(t)Q, \quad t \in \mathbb{R}_+.$$

Both these results need a formal justification of exchange of limits and summation, and we next present a formal proof for these two equations.

Theorem 1.14 (backward equation). For a homogeneous CTMC $X : \Omega \to \mathfrak{X}^{\mathbb{R}_+}$ with transition kernel function $P : \mathbb{R}_+ \to [0,1]^{\mathfrak{X} \times \mathfrak{X}}$ and generator matrix $Q \in \mathbb{R}^{\mathfrak{X} \times \mathfrak{X}}$, we have

$$\frac{dP(t)}{dt} = QP(t), \quad t \in \mathbb{R}_+.$$

Proof. Fix states $x, y \in X$ and we consider the liminf and limsup of (x, y)th term of $\frac{(P(s)-I)}{s}P(t)$. For any finite subset $F \subseteq X$ containing x, we obtain

$$\liminf_{s\downarrow 0} \sum_{z\in\mathcal{X}} \frac{(P_{xz}(s)-I_{xz})}{s} P_{zy}(t) \geqslant \sum_{z\in F} \liminf_{s\downarrow 0} \frac{(P_{xz}(s)-I_{xz})}{s} P_{zy}(t) = \sum_{z\in F} Q_{xz} P_{zy}(t).$$

The above inequality holds for any finite set $F \subseteq \mathcal{X}$, and thus taking supremum over increasing sets F, we get the lower bound. For the upper bound, we observe for any finite subset $F \subseteq \mathcal{X}$ containing state x, we have $\sum_{z \notin F} (P_{xz}(s) - I_{xz}) + \sum_{z \in F} (P_{xz}(s) - I_{xz}) = 0$. Therefore,

$$\limsup_{s\downarrow 0} \sum_{z\in\mathcal{X}} \frac{\left(P_{xz}(s)-I_{xz}\right)}{s} P_{zy}(t) \leqslant \limsup_{s\downarrow 0} \left(\sum_{z\in F} \frac{\left(P_{xz}(s)-I_{xz}\right)}{s} P_{zy}(t) - \sum_{z\in F} \frac{\left(P_{xz}(s)-I_{xz}\right)}{s} \right) = \sum_{z\in F} Q_{xz} P_{zy}(t) - \sum_{z\in F} Q_{xz}(t) - \sum_{z\in F}$$

The above inequality holds for any finite set $F \subseteq \mathcal{X}$, and thus taking infimum over increasing sets F and recognizing that $\sum_{z \in \mathcal{X}} Q_{xz} = 0$, we get the upper bound.

Theorem 1.15 (forward equation). For a homogeneous CTMC $X : \Omega \to \mathcal{X}^{\mathbb{R}_+}$ with transition kernel function $P : \mathbb{R}_+ \to [0,1]^{\mathcal{X} \times \mathcal{X}}$ and generator matrix $Q \in \mathbb{R}^{\mathcal{X} \times \mathcal{X}}$, we have

$$\frac{dP(t)}{dt} = P(t)Q, \quad t \in \mathbb{R}_+.$$

Proof. Fix states $x, y \in X$ and we consider the liminf and lim sup of (x, y)th term of $P(t) \frac{(P(s)-I)}{s}$. We take a finite set $F \subseteq X$ containing state y, to obtain the lower bound

$$\liminf_{s\downarrow 0} \sum_{z\in \mathcal{X}} P_{xz}(t) \frac{(P_{zy}(s) - I_{zy})}{s} \geqslant \sum_{z\in F} \liminf_{s\downarrow 0} P_{xz}(t) \frac{(P_{zy}(s) - I_{zy})}{s} \geqslant \sum_{z\in F} P_{xz}(t) Q_{zy}.$$

By taking limiting value for increasing sequence of finite sets $F \subseteq \mathcal{X}$, we obtain the lower bound. To obtain the upper bound, we observe for any finite subset $F \subseteq \mathcal{X}$ containing state y, we have

$$\limsup_{s\downarrow 0} \sum_{z\in\mathcal{X}} P_{xz}(t) \frac{(P_{zy}(s)-I_{zy})}{s} \leqslant \limsup_{s\downarrow 0} \left(\sum_{z\in F} P_{xz}(t) \frac{(P_{zy}(s)-I_{zy})}{s} + \sum_{z\notin F} \frac{P_{zy}(s)}{s}\right) = \sum_{z\in F} P_{xz}(t) Q_{zy} + \sum_{z\notin F} Q_{zy}.$$

The second equality follows from monotone convergence theorem. Taking infimum over increasing sets F and from the fact that $\sum_{z \notin \mathcal{X}} Q_{zy} = 0$, we get the upper bound.