
Lecture-18: Embedded Markov Chain and Sojourn Times

1 State Evolution

For a homogeneous Markov process X : Ω → XR
+ on countable state space X ⊆ R with sample paths

that are right continuous with left limits (rcll), we wish to characterize the transition kernel P : R+ →
[0,1]X×X, where Pxy(t)≜ P({Xs+t = y}

∣∣ {Xs = x}) for all s, t ∈ R+. To this end, we define the sojourn
time in any state, the jump times, and the jump transition probabilities.

1.1 Jump and sojourn times

Definition 1.1. Let S0 ≜ 0. The nth jump time of a right continuous countable state stochastic process
X : Ω →XR+ is defined inductively as Sn ≜ inf

{
t > Sn−1 : Xt ̸= XSn−1

}
. The counting process associated

with jump times sequence S : Ω → RN
+ is denoted by N : Ω → Z

R+
+ , where the number of jumps in

duration (0, t] is denoted by Nt ≜ ∑n∈N1{Sn⩽t}.

Lemma 1.2. Each term of the jump time sequence S : Ω → RN
+ is adapted to the natural filtration F• of the

process X : Ω → XR+ .

Proof. Since X is rcll, it is progressively measurable, and hence the event {Sn ⩽ t} ∈ Ft.

Definition 1.3. The jump process Z : Ω → XN is a discrete time process, derived from the continuous
time stochastic process X : Ω → XR+ by sampling X at the jump times S : Ω → RN

+ . The state of the
process X at the nth jump time Sn is the nth state Zn ≜ XSn of the jump process Z. The sojourn time
in the state Zn−1 for the process X is defined as Tn ≜ Sn − Sn−1. Number of jumps for the process X in
duration (0, t] is denoted by Nt ≜ ∑n∈N1{Sn⩽t}.

Remark 1. From the definition of jump instants, it follows that the history until time t is

Ft = σ(S0, (Z0, T1), (Z1, T2), . . . , (ZNt , At)).

We can verify that FSn = σ(S0, (Z0, T1), . . . , (Zn−1, Tn), Zn).

1.2 Excess time in a state

Definition 1.4. From the definition of excess time as the time until next transition, we can write the
excess time at time t ∈ R+ for the CTMC X as

Yt ≜ inf{s > 0 : Xt+s ̸= Xt} .

Remark 2. We observe that Yt is the excess remaining time the process spends in state Xt at instant t.
That is, Xt+Yt ̸= Xt.

Remark 3. For a homogeneous CTMC X, the distribution of excess time Yt conditioned on the current
state Xt, doesn’t depend on time t. Hence, we can define the following conditional complementary
distribution of excess time as F̄x(u)≜ P({Yt > u} |{Xt = x}) = Px {Y0 > u} .

Lemma 1.5. For a homogeneous CTMC X, there exists a positive sequence ν ∈ RX
+ , such that

F̄x(u)≜ P({Yt > u} |{Xt = x}) = e−uνx , x ∈ X.
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Proof. We fix a state x ∈ X, and observe that the function F̄x ∈ [0,1] is non-negative, non-increasing,
and right-continuous in u. Using the Markov property and the time-homogeneity, we can show that F̄x
satisfies the semigroup property. In particular,

F̄x(u + v) = P({Yt > u + v} |{Xt = x}) = P({Yt > u,Yt+u > v} |{Xt = x}) = F̄x(u)F̄x(v).

The only continuous function F̄x ∈ [0,1] that satisfies semigroup property is an exponential function
with a negative exponent.

Example 1.6 (Poisson process). Consider the counting process N : Ω → Z
R+
+ for a Poisson point process

with homogeneous rate λ. Using the stationary independent increment property, we have for all u ⩾ 0

F̄i(u) = P({Yt > u} | {Nt = i}) = P({Nt+u = i} |{Nt = i}) = P{Nt+u − Nt = 0} = P{Yt > u} = e−λu.

1.3 Sojourn time in a state

Lemma 1.7. For a homogeneous CTMC, each sojourn time Tn : Ω → R+ is a continuous memoryless random
variable, and the sequence of sojourn times (Tj : j ⩾ n) is independent of the past FSn−1 conditioned on Zn−1.

Proof. We observe that the sojourn time Tn equals the excess time YSn−1 , where the process remains in
state Zn−1 = XSn−1 in the duration Sn−1 + [0, Tn). Using the strong Markov property, we can write the
conditional complementary distribution of Tn given any historical event H ∈ FSn−1 and u ⩾ 0 as

P({Tn > u} |{Zn−1 = x} ∩ H) = P(
{

YSn−1 > u
}
|
{

XSn−1 = x
}
∩ H) = exp(−uνx) = F̄x(u).

Corollary 1.8. If Xn = x, then the holding time Tn+1 is an exponential random variable with rate νx.

Definition 1.9. For a homogeneous CTMC X, the exponential rate for the random holding time in a
state x is called the transition rate out of state x denoted by νx.

Definition 1.10. For a CTMC X, a state x ∈X is called instantaneous if νx = ∞, stable if νx ∈ (0,∞), and
absorbing if νx = 0.

Remark 4. Transition rate out of a state x is the inverse of mean holding time in this state x, i.e. νx =
1

ExT1
.

Therefore, the mean holding time ExT1 in state x is ∞ in an absorbing state, zero in an instantaneous
state, and almost surely finite and non-zero in a stable state.

Definition 1.11. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC.

Definition 1.12. A pure jump CTMC with
(i) all stable states and infx∈X νx ⩾ ν > 0 is called stable, and

(ii) supx∈X νx ⩽ ν < ∞ is called regular.

Example 1.13 (Non-regular CTMC). For the countable state space N, consider the probability transition
matrix P such that pn,n+1 = 1 and the exponential holding times with rate νn = n2 for each state n ∈ N.
Clearly, supn∈N νn = ∞, and hence it is not regular.

Remark 5. Pure jump homogeneous CTMC with finite stable states are stable and regular. We will focus
on pure jump homogeneous CTMC over countably infinite states, that are stable and regular.
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1.4 Jump times

Proposition 1.14. For a stable CTMC, the jump times are stopping times.

Proof. For a stable CTMC X, we let 0 < ν ⩽ infx∈X νx. Then, by coupling in Appendix B, we have a
sequence of i.i.d. random variables T : Ω → RN

+ , such that Tn ⩽ Tn almost surely and ETn = 1
ν for each

n ∈ N. Defining Sn ≜ ∑n
i=1 Ti, it follows that Sn ⩽ Sn for each n ∈ N. Since Sn is sum of n almost surely

finite random variables, it is finite almost surely. It follows that Sn is finite almost surely.

Proposition 1.15. For a regular CTMC, Nt is almost surely finite for all finite times t ∈ R+.

Proof. Let X be a regular CTMC and supx∈X νx ⩽ ν < ∞. Then, by coupling in Appendix B, we have
a sequence of i.i.d. random variables T : Ω → RN

+ , such that Tn ⩾ Tn almost surely and ETn = 1
ν for

each n ∈ N. Defining Sn ≜ ∑n
i=1 Ti and Nt ≜ ∑n∈N1{Sn⩽t}, it follows that Sn ⩾ Sn for each n ∈ N and

Nt ⩽ Nt for all t ∈ R+. Since N is a Poisson counting process with finite rate ν, it is almost surely finite
at all t ∈ R+ and the result follows.

1.5 Jump process

Remark 6. From the strong Markov property and the time-homogeneity of the CTMC X, we see that

P({Zn = y} | {Zn−1 = x}) = Pxy(Sn−1,Sn) = Pxy(0, Tn).

Remark 7. From the law of total probability, it follows that for any rcll stochastic process X : Ω → XR+

with countable state space X, the sum of jump transition probabilities ∑y ̸=x Pxy(Sn−1,Sn) = 1 for all
states XSn−1 = x ∈ X.

Lemma 1.16. For a homogeneous CTMC X, the jump probability from state Zn−1 to state Zn depends solely on
Zn−1 and is independent of jump instants.

Proof. Fix states x,y ∈X and a historical event H ∈ FSn−1 . From the definition of conditional probability,
we write

P({Tn > u, Zn = y} | {Zn−1 = x}∩ H) = P({XSn = y} |
{

Tn > u, XSn−1 = x
}
∩ H)P({Tn > u} | {Zn−1 = x}∩ H).

From the strong Markov property of X, we get P({Tn > u} | {Zn−1 = x} ∩ H) = F̄x(u). We further ob-
serve that

{
Tn > u, XSn−1 = x

}
∩ H = {Xt = x, t ∈ Sn−1 + [0,u]} ∩ H ∈ FSn−1+u. From the definition of

excess time, we can write Sn = Sn−1 + u + YSn−1+u for any u ∈ [0, Tn]. Further, from the strong Markov
and the time-homogeneity of CTMC X, and the memoryless property of excess time Y, we obtain

P({XSn = y} |
{

Tn > u, XSn−1 = x
}
∩ H) = P(

{
XSn−1+u+YSn−1+u = y

}
|
{

XSn−1+u = x
}
) = Pxy(0,Y0).

This implies that sojourn times and jump instant probabilities are independent.

Definition 1.17. The jump process Z is also sometimes referred to as the embedded DTMC of the pure
jump CTMC X. The corresponding jump transition probabilities are defined

pxy ≜ Pxy(Sn−1,Sn) = P({XSn = y}
∣∣ {XSn−1 = x

}
), x,y ∈ X.

Remark 8. If νx = 0, then for any u ⩾ 0, we have P({Y0 > u} | {X0 = x}) = 1, and hence S1 = ∞ almost
surely whenever X0 = x. By convention, we set pxx = 1 and pxy = 0 for all states y ̸= x.

Corollary 1.18. The matrix p ≜ (pxy : x,y ∈ X) is stochastic, and if νx > 0 then pxx = 0.

Proof. Recall pxy = Pxy(S1). If νx > 0, then limu→∞ P({Y0 > u} |{X0 = x}) = 0, and hence S1 is finite
almost surely. By definition XS1 ̸= X0 = x, and hence pxx = 0.

Proposition 1.19. Consider a stable CTMC X : Ω → XR+ . Then for all states x,y ∈ X and duration u ∈ R+,

P({Tn+1 > u, Zn+1 = y} |{X0 = x0, . . . , Zn = x,S0 ⩽ s0, . . . ,Sn ⩽ sn}) = pxye−uνx .
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Proof. The history of the process until stopping time Sn is given by FSn = σ(S0, (Z0, T1), . . . , (Zn−1, Tn), Zn).
Therefore H ≜ {S0 ⩽ s0}∩n

i=1 {Zi−1 = xi−1,Si ⩽ si} ∈FSn and {Zn = x}∩ H ∈FSn . Using strong Markov
property and time-homogeneity of the CTMC X, we have

P({Tn+1 > u, Zn+1 = y} | {Zn = x} ∩ H) = Px {S1 > u, Z1 = y} .

The result follows from the previous Lemma 1.16.

Corollary 1.20. For a time-homogeneous CTMC, the transition probabilities (pxy : x,y ∈ X) and holding times
T : Ω → RN

+ are independent. The jump process Z : Ω → XZ+ is a homogeneous Markov chain with countable
state space X. The holding time sequence T : Ω → RN

+ is independent and Tn is distributed exponentially with
rate νZn−1 for each n ∈ N.

Example 1.21 (Poisson process). For a Poisson counting process N : Ω → Z
R+
+ with time-homogeneous

rate λ, the countable state space is Z+, and transition rate νn = λ for each state n ∈ Z+. It follows from
the memoryless property of exponential random variables, that

F̄n(t) = P({Yu > t} | {Nu = n}) = P{S1 > t} = e−λt.

Further, the embedded Markov chain or the jump process is given by the initial state N0 = 0 and the
transition probability matrix P = (pn,m : n,m ∈ Z+) where pn,n+1 = 1 and pn,m = 0 for m ̸= n + 1. This
follows from the definition of T1, since pn,m = P(

{
NT1 = m

}
| {N0 = m}) = 1{m=n+1}.

Theorem 1.22. A pure-jump homogeneous CTMC whose embedded DTMC is recurrent is regular.

Proof. Let X0 = x ∈ X be the initial state. Let Nx(n) = ∑n
k=11{Zk=x} be the number of visits to a state

x ∈ X in the first n transitions and Tx
i be the ith sojourn time in the state x. From the recurrence of the

embedded chain, the state x occurs infinitely often, i.e. limn∈N Nx(n) = ∞ almost surely. It follows that
the sojourn time sequence Tx : Ω → RN

+ is i.i.d. and exponentially distributed with mean ETx
i = 1

νx
< ∞.

Since Sn ⩾ ∑
Nx(n)
i=1 Tx

i , we get that

mt = ∑
n∈N

P{Sn ⩽ t}⩽ ∑
n∈N

P

{
Nx(n)

∑
i=1

Tx
i ⩽ t

}
= νxt.

It follows that Nt is almost surely finite for any finite time t ∈ R+.

A Exponential random variables

Lemma A.1. Let X be an exponential random variable, and S be any positive random variable, independent of
X. Then, for all u ⩾ 0

P({X > S + u} | {X > S}) = P{X > u} .

Proof. Let the distribution of S be F and X be memoryless with rate µ. From the definition of conditional
probability, we can write P({X > S + u} | {X > S}) = P{X>S+u}

P{X>S} . Since a probability is an expectation
of an indicator, we can write

P{X > S + u} = E[E[1{X>S+u} | σ(S)]] = E[e−µ(S+u)] = e−µuE[e−µS].

It follows that P({X > S + u} | {X > S}) = P{X > u} = e−µu for all u ∈ R+.

B Coupling

For a homogeneous regular and stable CTMC X : Ω → XR+ , we denote the embedded Markov chain by
Z : Ω → XZ+ and the independent inter-jump time sequence by T : Ω → RN

+ where Tn is an exponential
random variable with rate νZn−1 for all n ∈ N. From the regularity and stability of process X, we have

0 < ν ⩽ inf
x∈X

νx ⩽ sup
x∈X

νx ⩽ ν < ∞.
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Consider an i.i.d. uniform random sequence U : Ω → [0,1]N and define three dependent random se-
quences T, T, T : Ω → RN

+ such that for each n ∈ N, we have

Tn ≜−1
ν

logUn, Tn ≜−1
ν

logUn, Tn ≜− 1
νZn−1

logUn.

We observe that T and T are i.i.d. exponential random sequences with rates ν and ν respectively. Fur-
ther, T is an independent exponential random sequence with the rate νZn−1 for Tn. In addition, by
construction, we have Tn ⩽ Tn ⩽ Tn for each n ∈ N.
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