
Lecture-21: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : Ω → XR is time reversible if the vector (Xt1 , . . . , Xtn) has the
same distribution as (Xτ−t1 , . . . , Xτ−tn) for all finite positive integers n, time instants t1 < t2 < · · · < tn
and shifts τ ∈ R.

Lemma 1.2. A time reversible process is stationary.

Proof. It suffices to show that for any shift s ∈ R, a finite n ∈ N, time instants t1 < · · · < tn, and states
x1, . . . , xn ∈ X, we have

P
(
∩i∈[n] {Xti = xi}

)
= P

(
∩i∈[n] {Xs+ti = xi}

)
.

This follows from time reversibility of X, since both (Xt1 , . . . , Xtn) and (Xs+t1 , . . . , Xs+tn) have the same
distribution as (X−t1 , . . . , X−tn), by taking τ = 0 and τ = −s respectively.

Theorem 1.3. A stationary homogeneous Markov process X : Ω → XR with countable state space X ⊆ R and
probability transition kernel P : R+ → [0,1]X×X is time reversible iff there exists a probability distribution π ∈
M(X), that satisfy the detailed balanced conditions

πxPxy(t) = πyPyx(t) for all x,y ∈ X and times t ∈ R+. (1)

When such a distribution π exists, it is the invariant distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by π, and by time reversibility of X, we have

Pπ {Xt1 = x, Xt1+t = y} = Pπ {Xt1 = y, Xt1+t = x} ,

for τ = 2t1 + t. Hence, we obtain the detailed balanced conditions in Eq. (1).
Conversely, let π be the distribution that satisfies the detailed balanced conditions in Eq. (1), then

summing up both sides over y ∈ X, we see that π is the invariant distribution for X. Let x ∈ Xm, then
applying detailed balanced equations in Eq. (1) repeatedly, we can write

π(x1)Px1x2(t2 − t1) . . . Pxm−1xm(tm − tm−1) = π(xm)Pxmxm−1(tm − tm−1) . . . Px2x1(t2 − t1).

For the time homogeneous stationary Markov process X, it follows that for all t0 ∈ R+

Pπ {Xt1 = x1, . . . , Xtm = xm} = Pπ {Xt0 = xm, . . . , Xt0+tm−t1 = x1} .

Since m ∈ N and t0, t1 . . . , tm were arbitrary, the time reversibility follows.

1.1 Reversible Chains

Corollary 1.4. A stationary homogeneous discrete time Markov chain X : Ω → XZ with transition matrix
P ∈ [0,1]X×X is time reversible iff there exists a probability distribution π ∈ M(X), that satisfies the detailed
balanced conditions

πxPxy = πyPyx, x,y ∈ X. (2)

When such a distribution π exists, it is the invariant distribution of the process.
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Example 1.5 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X, E)
with the vertex set X and the edge set E = {{x,y} : x,y ∈ X} being a subset of unordered pairs of ele-
ments from X. We say that y is a neighbor of x (and x is a neighbor of y), if e = {x,y} ∈ E and denote
x ∼ y. We assume a function w : E → R+, such that we is a positive number associated with each edge
e = {x,y} ∈ E. Let Xn ∈ X denote the location of a particle on one of the graph vertices at the nth time-
step. Consider the following random discrete time movement of a particle on this graph from one vertex
to another. If the particle is currently at vertex x then it will next move to vertex y with probability

Pg
xy ≜ P({Xn+1 = y} |{Xn = x}) = we

∑ f :x∈ f w f
1{e={x,y}}.

The Markov chain X : Ω → XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a graph!

Proposition 1.6. Consider an irreducible homogeneous Markov chain that describes the random walk on an
edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible with
stationary probability of being in a state x ∈ X given by

πx =
∑ f :x∈ f w f

2∑g∈E wg
. (3)

Proof. Using the definition of transition probabilities for this Markov chain and the given distribution
π defined in (3), we notice that

πxPg
xy =

we

∑ f∈E w f
1{e={x,y}}, πyPg

yx =
we

∑ f∈E w f
1{e={x,y}}.

Hence, the detailed balance equation for each pair of states x,y ∈ X is satisfied, and the result follows.

We can also show the following dual result.

Lemma 1.7. Let X : Ω → XZ+ be a time reversible Markov chain on a finite state space X and transition
probability matrix P ∈ [0,1]X×X. Then, there exists a random walk on a weighted, undirected graph G with the
same transition probability matrix P.

Proof. We create a graph G = (X, E), where E =
{
{x,y} : x,y ∈ X, Pxy > 0

}
. For the stationary distribu-

tion π : X→ [0,1] for the Markov chain X, we set the edge weights

w{x,y} ≜ πxPxy = πyPyx,

With this choice of weights, it is easy to check that wx = ∑ f :x∈ f w f = πx, and the transition matrix

associated with a random walk on this graph is exactly P with Pg
xy =

w{x,y}
wx

= Pxy.

Is every Markov chain time reversible?

1. If the process is not stationary, then no. To see this, we observe that

P{Xt1 = x1, Xt2 = x2} = νt1(x1)Px1x2(t2 − t1), P{Xτ−t2 = x2, Xτ−t1 = x1} = ντ−t2(x2)Px2x1(t2 − t1).

If the process is not stationary, the two probabilities can’t be equal for all times τ, t1, t2 and states
x1, x2 ∈ X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a sta-
tionary distribution α ∈ M(X) that satisfies the detailed balance equations αxPxy = αyPyx for all
states x,y ∈ X. For any arbitrary Markov chain X, one may not end up getting any solution.
To see this consider a state z ∈ X such that PxyPyz > 0. Time reversibility condition implies that
Pα {X1 = x, X2 = y, X3 = z} = Pα {X1 = z, X2 = y, X3 = z}, and hence

αx

αz
=

PzyPyx

PxyPyz
̸= Pzx

Pxz
.
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Thus, we see that a necessary condition for time reversibility is PxyPyzPzx = PxzPzyPyx for all
x,y,z ∈ X.

Theorem 1.8 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary homoge-
neous Markov chain X : Ω → XZ is time reversible if and only if starting in state x0 ∈ X, any path back to state
x0 has the same probability as the time reversed path, for all initial states x0 ∈X. That is, for any n ∈ N and state
vector x ∈ Xn

Px0x1 Px1x2 . . . Pxnx0 = Px0xn Pxnxn−1 . . . Px1x0 . (4)

Proof. The detailed balance equation for a time reversible Markov process X implies that Px0x1 Px1x2 . . . Pxnx0 =
Px0xn Pxnxn−1 . . . Px1x0 . Conversely, if (4) holds for any non-negative integer n ∈ N, then for any states
x0,y ∈ X, we have

(Pn+1)x0yPyx0 = ∑
x1,x2,...xn

Px0x1 . . . PxnyPyx0 = ∑
x1,x2,...xn

Px0yPyxn . . . Px1x0 = Px0y(Pn+1)yx0 .

Taking the limit n → ∞ and noticing that limn→∞(Pn)xy = πy for all x,y ∈ X, we observe that X is a
time-reversible process.

1.2 Reversible Processes

Corollary 1.9. A stationary homogeneous Markov process X : Ω → XR with generator matrix Q ∈ RX×X is
time reversible iff there exists a probability distribution π ∈M(X), that satisfies the detailed balanced conditions

πxQxy = πyQyx, x,y ∈ X. (5)

When such a distribution π exists, it is the invariant distribution of the process.

Definition 1.10. Let X : Ω → XR be a stationary homogeneous Markov process with stationary distri-
bution π ∈ M(X) and the generator matrix Q ∈ RX×X. The probability flux from state x to state y is

defined as limt→∞
Nxy

t
t , where Nxy

t ≜ ∑n∈N1{Sn⩽t,Xn=y,Xn−1=x} denotes the total number of transitions
from state x to state y in the time duration (0, t].

Lemma 1.11. For a time-homogeneous CTMC X, the probability flux from state x to state y is πxQxy =

limt→∞
Nxy

t
t .

Proof. Let X0 = x and τ+
x (k) be the kth visiting time to state x. It follows that τ+

x : Ω → RN
+ is a renewal

sequence. We consider a reward process Nxy
t . We let Nxy(k) denote the total number of transitions from

state x to state y in the kth inter-renewal duration. Then, we observe that Ex Nxy(k) = pxy and recall
that Exτ+

x (1) = 1
πxνx

. From the renewal reward process, we obtain

lim
t→∞

Nxy
t
t

=
Ex Nxy(1)
Exτ+

x (1)
= πxνx pxy = πxQxy.

Lemma 1.12. For a stationary homogeneous Markov process X : Ω → XR, probability flux balances across a cut
A ⊆ X, that is

∑
y/∈A

∑
x∈A

πxQxy = ∑
x∈A

∑
y/∈A

πyQyx.

Proof. From the row sum of generator matrix being zero, we get ∑y∈X Qxy = 0 for all x ∈X. In particular,
we get ∑y∈X ∑x∈A πxQxy = 0. Further, the global balance condition is πQ = 0, i.e. ∑y∈X πyQyx = 0 for
all x ∈ X. In particular, we get ∑x∈A ∑y∈X πyQyx = 0. Further, we have the following identity from
change of variables, ∑y∈A ∑x∈A πxQxy = ∑y∈A ∑x∈A πyQyx. Subtracting the second identity from the
first, we get the result.

Corollary 1.13. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,

∑
y ̸=x

πxQxy = ∑
y ̸=x

πyQyx.
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Example 1.14. We define two non-negative sequences birth and death rates denoted by λ ∈ R
Z+
+ and

µ ∈ RN
+ . A Markov process X : Ω → Z

R+
+ is called a birth-death process if its infinitesimal transition

probabilities satisfy

Pn,n+m(h) = (1 − λnh − µnh1{n ̸=0} − o(h))1{m=0} + λnh1{m=1} + µnh1{m=−1}1{n ̸=0} + o(h).

We say f (h) = o(h) if limh→0
f (h)

h = 0. In other words, a birth-death process is a CTMC with generator
of the form

Q =


−λ0 λ0 0 0 0
µ1 −(λ1 + µ1) λ1 0 0 · · ·
0 µ2 −(λ2 + µ2) λ2 0 · · ·
0 0 µ3 −(λ3 + µ3) λ3 · · ·
...

...
...

...
...

. . .

 .

Proposition 1.15. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form A =
{0,1,2, . . . ,n}, for n ∈ Z+. But, this is precisely the equation πnλn = πn+1µn+1 since there are no other
transitions possible across the cut. So the process is time-reversible.

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.16. Consider an irreducible ergodic CTMC X : Ω → XR on a countable state space X with gen-
erator matrix Q ∈ RX×X having the following property. For any pair of states x ̸= y ∈ X, the transition graph
has a unique path x = x0 → x1 → ·· · → xn(x,y) = y and y = xn(x,y) → xn−1 → ·· · → x0 = x of distinct states.
Then the CTMC in steady-state is time reversible.

Proof. Let the stationary distribution of X be π ∈ M(X), such that πQ = 0. Let x ̸= y ∈ X, then either
Qxy = Qyx = 0 or QxyQyx > 0. In the former case, the detailed balance equation is satisfied trivially for
the pair (x,y). In the latter case, we define a set

Ax ≜ {z ∈ X : z connected to x via y} .

Clearly, x ∈ Ax and y /∈ Ax, and Qzw = Qwz = 0 for all w ∈ Ax \ {x} and z ∈ Ac
x \ {y}. If not, then there

are two paths between x,y ∈ X and that contradicts the hypothesis. From the probability flux balance
across cuts, we obtain the detailed balance equation

πxQxy = πyQyx.

Since the choice of states x,y ∈ X was arbitrary, the result follows.

Exercise 1.17. Prove Corollary 1.4 and Corollary 1.9 from Theorem 1.3.
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