Lecture-21: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : O — XR is time reversible if the vector (X;,,...,Xs,) has the
same distribution as (Xt—_,,...,Xr—,) for all finite positive integers n, time instants t; <t, < --- <ty
and shifts T € R.

Lemma 1.2. A time reversible process is stationary.

Proof. It suffices to show that for any shift s € R, a finite n € IN, time instants t; < --- < t,, and states
X1,...,X, € X, we have

P( Niep { X, = xi}) = P( Niep) {Xs+t; = xi}>-

This follows from time reversibility of X, since both (Xy,,...,X,) and (Xs++t,,..., Xs+t,) have the same
distribution as (X_¢,,...,X_¢,), by taking T = 0 and T = —s respectively. O

Theorem 1.3. A stationary homogeneous Markov process X : Q — XR with countable state space X C R and
probability transition kernel P : Ry — [0,1]**X is time reversible iff there exists a probability distribution 7 €
M(X), that satisfy the detailed balanced conditions

Tty Pyy (t) = 70y Py (t) for all x,y € X and times t € R 1)
When such a distribution 1t exists, it is the invariant distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by 7, and by time reversibility of X, we have

PT[{Xfl - x/Xt]+t = y} - PT[{th - ]//thth - x}r

for T = 2t; + t. Hence, we obtain the detailed balanced conditions in Eq. ().

Conversely, let 7t be the distribution that satisfies the detailed balanced conditions in Eq. (I)), then
summing up both sides over y € X, we see that 77 is the invariant distribution for X. Let x € X", then
applying detailed balanced equations in Eq. (1) repeatedly, we can write

70(x1) Peyxy (b2 — 11) o+« P,y oo (B — t—1) = 70(Xm) Pryy o (b — tm—1) - - Pryxy (2 — 11).
For the time homogeneous stationary Markov process X, it follows that for all £y € R
P;I {th = X1,.- -/Xtm = Xm} = P;-[ {Xt[) =Xm,-- "Xtothm*tl = xl} .

Since m € N and t¢,t; ..., t, were arbitrary, the time reversibility follows. O

1.1 Reversible Chains

Corollary 1.4. A stationary homogeneous discrete time Markov chain X : Q — X% with transition matrix
P € [0,1]X%%X is time reversible iff there exists a probability distribution 7t € M(X), that satisfies the detailed
balanced conditions

T Pyy = 11y Pyx,  x,y € X. 2)

When such a distribution 7t exists, it is the invariant distribution of the process.



Example 1.5 (Random walks on edge-weighted graphs). Consider an undirected graph G = (X,E)
with the vertex set X and the edge set E = {{x,y} : x,y € X} being a subset of unordered pairs of ele-
ments from X. We say that y is a neighbor of x (and x is a neighbor of ), if e = {x,y} € E and denote
x ~ Y. We assume a function w : E — IR, such that w, is a positive number associated with each edge
e={x,y} € E. Let X;, € X denote the location of a particle on one of the graph vertices at the nth time-
step. Consider the following random discrete time movement of a particle on this graph from one vertex
to another. If the particle is currently at vertex x then it will next move to vertex y with probability

w,

S A — — — €
Py = P{Xp1 =y} [{Xn=x}) = ml{e:{x#}}'
The Markov chain X : Q — XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a graph!

Proposition 1.6. Consider an irreducible homogeneous Markov chain that describes the random walk on an
edge weighted graph with a finite number of vertices. In steady state, this Markov chain is time reversible with
stationary probability of being in a state x € X given by
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Proof. Using the definition of transition probabilities for this Markov chain and the given distribution
7t defined in (B), we notice that
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Hence, the detailed balance equation for each pair of states x,y € X is satisfied, and the result follows.
O

We can also show the following dual result.

Lemma 1.7. Let X : Q — X%+ be a time reversible Markov chain on a finite state space X and transition
probability matrix P € [0,1]**X. Then, there exists a random walk on a weighted, undirected graph G with the
same transition probability matrix P.

Proof. We create a graph G = (X, E), where E = {{x,y} : x,y € X, P, > 0}. For the stationary distribu-
tion 71 : X — [0, 1] for the Markov chain X, we set the edge weights

N _
Wiy} = TxPry = 70y Py,

With this choice of weights, it is easy to check that wx =} r cfws = 7y, and the transition matrix

associated with a random walk on this graph is exactly P with P§y = w%’} = Pyy. O

Is every Markov chain time reversible?

1. If the process is not stationary, then no. To see this, we observe that
P{Xt, = x1,Xt, = %2} =1, (X1)Peyy (2 — 1), P{Xe—t, = %2, Xv—t; = X1} = Vg1, (X2) Payy (f2 — 11).

If the process is not stationary, the two probabilities can’t be equal for all times 7,1, t; and states
x1,x2 € X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a sta-
tionary distribution & € M(X) that satisfies the detailed balance equations ayPyy = &, Py for all
states x,y € X. For any arbitrary Markov chain X, one may not end up getting any solution.
To see this consider a state z € X such that Py, Py, > 0. Time reversibility condition implies that
P{Xi=x,Xy=y,Xz=2z} =P {X1 =2 Xy =y,X3 =z}, and hence
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Thus, we see that a necessary condition for time reversibility is Py, Py, P.x = Py; Py Py for all
x,y,z € X.

Theorem 1.8 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary homoge-
neous Markov chain X : Q — X% is time reversible if and only if starting in state xo € X, any path back to state
xo has the same probability as the time reversed path, for all initial states xo € X. That is, for any n € IN and state
vector x € X"

Px0x1 Px]xz e Pxnxo = Pxoxnpxnxn,1 cee lexo' (4)

Proof. The detailed balance equation for a time reversible Markov process X implies that Py,x, Py,x;, - - - Px,x, =
Proxy Pryx, 1 -+ Pryxy- Conversely, if holds for any non-negative integer n € IN, then for any states
x0,y € X, we have

(P”+1)x0yPny = Z Pryx; ---PxnyPyx(J = Z Pxoypyxn”'Px]xo = Pxoy(Pn+1)yx0'

X1,X0,.--Xp X1,X0,--Xp

Taking the limit # — oo and noticing that lim,, . (P") xy = 7ty for all x,y € X, we observe that X is a
time-reversible process. O

1.2 Reversible Processes

Corollary 1.9. A stationary homogeneous Markov process X : Q — XR with generator matrix Q € R** is
time reversible iff there exists a probability distribution = € M(X), that satisfies the detailed balanced conditions

ﬂxQxy = ﬂyny/ x,y € X. ®)
When such a distribution 7 exists, it is the invariant distribution of the process.

Definition 1.10. Let X : Q — X be a stationary homogeneous Markov process with stationary distri-

bution 771 € M(X) and the generator matrix Q € R**%, The probability flux from state x to state v is
Xy

defined as lim; 0 N%, where NV £y, .1 {(Su<t,Xn=y,X,_1—x) denotes the total number of transitions

from state x to state y in the time duration (0, ¢].

Lemma 1.11. For a time-homogeneous CTMC X, the probability flux from state x to state y is 71xQxy =

xy
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Proof. Let Xo = x and 75 (k) be the kth visiting time to state x. It follows that 7,/ : O — R is a renewal

sequence. We consider a reward process Ntx Y. We let N*¥ (k) denote the total number of transitions from
state x to state y in the kth inter-renewal duration. Then, we observe that E;N*Y (k) = pxy and recall

that E, 7, (1) = ﬁ From the renewal reward process, we obtain

. NY E.NY(1)
tlggo -+ = m = TlxVxPxy = TxQxy-

O

Lemma 1.12. For a stationary homogeneous Markov process X : Q) — XR, probability flux balances across a cut

A C X, that is
Y ) mQuy= ), ) myQux

yEAxXEA XEAYZA

Proof. From the row sum of generator matrix being zero, we get ), c x Qxy =0 for all x € X. In particular,
we get Y e Yxen TxQuy = 0. Further, the global balance condition is 7Q =0, i.e. Yyex TyQyx =0 for
all x € X. In particular, we get Yy c oY yex 77yQyx = 0. Further, we have the following identity from
change of variables, ) c 4 Y vea TxQxy = Lyea Lxea TyQyx. Subtracting the second identity from the
first, we get the result. O

Corollary 1.13. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,

Y mQxy = ), 1y Qya-
y#x y#x



Example 1.14. We define two non-negative sequences birth and death rates denoted by A € ]R%Jr and

u € RN, A Markov process X : Q) — ZE* is called a birth-death process if its infinitesimal transition
probabilities satisfy

Pupm(h) = (1= Anh — pnh1 20y — 0(h)) Lm=oy + AnhL =1y + pnh = 1) L{nzoy +o0(h).

We say f(h) = o(h) if limy, @ = 0. In other words, a birth-death process is a CTMC with generator
of the form

~ A Ao 0 0 0
M1 f(/\l + Vl) M 0 0
o=1| 0 2 — (A2 +p2) Ao 0

0 0 "3 —(Az3+mu3) A3

Proposition 1.15. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form A =
{0,1,2,...,n}, for n € Z. But, this is precisely the equation 71,A,, = 7,41 4,+1 since there are no other
transitions possible across the cut. So the process is time-reversible. O

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.16. Consider an irreducible ergodic CTMC X : Q — XR on a countable state space X with gen-
erator matrix Q € RM*X having the following property. For any pair of states x # y € X, the transition graph
has a unique path x = xo — X1 =+ = Xy(y,) =Y ANd Y = Xy ) — Xp—1 — -+ — Xo = x of distinct states.
Then the CTMC in steady-state is time reversibyle.

Proof. Let the stationary distribution of X be 7w € M(X), such that 7Q = 0. Let x # y € X, then either
Qxy = Qyx = 0 or QxyQyx > 0. In the former case, the detailed balance equation is satisfied trivially for
the pair (x,y). In the latter case, we define a set

Ay 2 {z € X:z connected to x viay}.

Clearly, x € Ayand y ¢ Ay, and Qzy = Quz =0forallw € A, \ {x} and z € AS \ {y}. If not, then there
are two paths between x,y € X and that contradicts the hypothesis. From the probability flux balance
across cuts, we obtain the detailed balance equation

T Qxy = 70y Qyx-

Since the choice of states x,y € X was arbitrary, the result follows. O

Exercise 1.17. Prove Corollary[1.4and Corollary[1.9|from Theorem
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