Lecture-23: Reversed Processes

1 Reversed Processes

Definition 1.1. Let X : Q — X7 be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X : QO — XT defined as Xf £ X, for all t € T is the reversed process for some
Tel.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 1.2. If X : QO — XT is a Markov process, then the reversed process X* is also Markov for any T € T.

Proof. Let JFq be the natural filtration of the process X. From the Markov property of process X, for any
event F € 0(X,:u>t),H€o(Xs:s<t),states x,y € X, and times u,s > 0, we have

P(E[{Xr=y} N H) =P(F[{X; =y}).
Markov property of the reversed process follows from the observation, that

P(HN{X; =y})P(F | HO{X; = y})
P{X; =y} P(F[{X; =y})

P(H[{X;=y}NF)= = P(H[{X; =y}).

O

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 1.3. If X : QO — XR is an irreducible, positive recurrent, stationary, and homogeneous Markov process
with transition kernel P : R — [0,1]**X and invariant distribution € M(X), then the reversed Markov
process X : Q) — XR is also irreducible, positive recurrent, stationary, and homogeneous with the same invariant
distribution 7t and transition kernel P : R — [0,1]%* defined for all t € T and states x,y € X, as

N 7T
IOE n—yPyx(t).

X

Further, for any finite sequence of states x € X", finite sequence of times t € T" such that t; <t, <--- <ty and
any shift T € IR, we have

Pely {Xi, =x;} =D, {xt = xi} .
Proof. We observe that )A(fl = Xy, foralli € [n].
Step 1: We can verify that P is a probability transition kernel.
. ny >0forallteT.
° Zyexpxy(t) = %Zyex nyPyX(t) =1

Step 2: 7 is an invariant distribution for P, since for all states x,y € X

) Tty Py (t) = 1y Y Py(t) = my.

xeX xeX



Step 3: We next wish to show that P defined in the Theorem, is the probability transition kernel for the
reversed process. Since the forward process is stationary and time-homogeneous, we can write
the probability transition kernel for the reversed process as

) A Pe{Xeot—s =y, Xe—s=x}  yPp(t)
PURE =) | {85 =x)) = PO b e =2 - Bl

This implies that the reversed process is time-homogeneous and has the desired probability tran-
sition kernel. Further, 7t is the invariant distribution for the reversed process and is the marginal
distribution for the reversed process at any time ¢, and hence the reversed process is also station-

ary.
Step 4: We now need to check if P is irreducible. For an irreducible and positive recurrent Markov

process with invariant distribution 77, we have 7ty > 0 for each state x € X. Since the forward
process is irreducible, there exists a time ¢ > 0 such that Pyx(t) > 0 for states x,y € X, and hence

Pyy(t) > 0 implying irreducibility of the reversed process.

Step 5: Now, we want to show that Pr N, {X;, = x;} = Pr N, {Xf} =X; } From the Markov property

of the underlying processes and definition of P, we can write

n—1 n—1 . . .
Pre (M {5 = i} ) = 70, [T P (i — 1) = 7o, [T P (7= 1) = (7= ti2)) = Py { K5 = i} ).
i=1 i=1

1=

This follows from the fact that 7ty Py, x, (t2 — t1) = 7Ty, pxle (tp — t1), and hence we have

n—1 n—1
TTxy H Py (tipr — ti) = 7Ty, H Py, iz (tie1 — ti)-
i=1 i=1

For any finite n € IN, we see that the joint distributions of (X;,,...,X;,) and (Xs1¢,,..., Xs1,) are
identical for all s € T, from the stationarity of the process X. It follows that X7 is also stationary,
since (Xf ,..., X ) and (X§,; ,..., X7, ) have the identical distribution.

O

1.1 Reversed Markov Chain

Corollary 1.4. If X : O — X% is an irreducible, stationary, homogeneous Markov chain with transition matrix P
and invariant distribution 7t, then the reversed chain X™ : Q) — X% is an irreducible stationary, time homogeneous
Markov chain with the same invariant distribution 7, and transition matrix P defined as ﬁxy £ %Pyx, for all
x,y€X.

Corollary 1.5. Consider an irreducible Markov chain X with transition matrix P : X x X — [0,1]. If one can
find a non-negative vector &« € M(X) and other transition matrix P* : X x X — [0,1] that satisfies the detailed
balance equation for all x,y € X

‘xxpxy = “yp;xr 1)

then P* is the transition matrix for the reversed chain and w is the invariant distribution for both chains.

Proof. Summing both sides of the detailed balance equation (1) over x, we obtain that « is the invariant
“’;I;” , it follows that P* : X’ x X — [0,1] is the transition
matrix of the the reversed chain and « is the invariant distribution of the reversed chain. O

distribution of the forward chain. Since Py, =

1.2 Reversed Markov Process

Corollary 1.6. If X : Q) — XR is an irreducible, stationary, homogeneous Markov process with generator matrix
Q and invariant distribution 7T, then the reversed process X7 : 0 — XR is also an irreducible, stationary, homo-
geneous Markov process with same invariant distribution 7t and generator matrix Q defined as Qxy = %ny,
forall x,y € X.

Corollary 1.7. Let Q : X x X — R denote the rate matrix for an irreducible Markov process. If we can find
Q" : X x X = R and a distribution 7t € M(X) such that for y # x € X, we have

nxQxy = nyQ;x/ and Z Qxy = Z Q;y/
y#x y#x

then Q* is the rate matrix for the reversed Markov process and 7t is the invariant distribution for both processes.



2 Applications of Reversed Processes

2.1 Truncated Markov Processes

Definition 2.1. For a Markov process X : () — XR and a subset A C X the boundary of A is defined as
0AE{y¢ A:Qx, >0, forsomex € A}.

Example 2.2. Consider a birth-death process. Let A = {3,4}. Then, 0A = {2,5}

Definition 2.3. Consider a transition rate matrix Q : X x X — IR on the countable state space X. Given
a nonempty subset A C X, the truncation of Q to A is the transition rate matrix Q4: A x A— R, where
forallx,yc A

QA é Qxyr y ;é X,
Yoo Leea\n) Qe y=2

Proposition 2.4. Suppose X : () — XR is an irreducible, time-reversible CTMC on the countable state space X,
with generator Q : X x X — R and invariant distribution = € M(X). Suppose the truncated Markov process
XA to a set of states A C X with generator matrix Q% is irreducible. Then, X* : QO — AR at stationarity is
time-reversible, with invariant distribution w* € M(A) defined as

Ty

A A
T E
v erA Tlx

, YEA

Proof. 1t is clear that 714 is a distribution on state space A. We must show the reversibility with this
distribution 7t4. That is, we must show for all states x,yecA

A A
T Quy = ysy Qyx-

However, this is true since the original chain is time reversible. O

Example 2.5 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
with load p £ % that has a finite buffer capacity of at most K customers. Thus, customers that arrive

when there are already K customers present are rejected. It follows that the CTMC for this system is
simply the M/M/1 CTMC truncated to the state space {0,1,...,K}, and so it must be time-reversible
with invariant distribution )
1
m=—Ff o<i<k

k .7
Lij—of’
Example 2.6 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates A; and y; respectively for i € [2]. Then, the joint distribution of two queues is

(ny,m2) = (1= p1)py" (1= p2)py?, mi,mp € Zo.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R wait-
ing customer then it leaves. Defining A = {n S Z%r i1y +np < R}, we observe that the joint Markov
porcess is restricted to the set of states A, and the invariant distribution for the truncated Markov pro-
cess is

ny np
P1 P
my’

(711,112) € A.
Z(ml,mz)eA pTlpz

nt(ny,np) =
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