
Lecture-23: Reversed Processes

1 Reversed Processes

Definition 1.1. Let X : Ω →XT be a stochastic process with index set T being an additive ordered group
such as R or Z. Then, X̂τ : Ω → XT defined as X̂τ

t ≜ Xτ−t for all t ∈ T is the reversed process for some
τ ∈ T.

Remark 1. Note that a reversed process, doesn’t have to have the identical distribution to the original
process. For a reversible process X, the reversed process would have identical distribution.

Lemma 1.2. If X : Ω → XT is a Markov process, then the reversed process X̂τ is also Markov for any τ ∈ T.

Proof. Let F• be the natural filtration of the process X. From the Markov property of process X, for any
event F ∈ σ(Xu : u > t), H ∈ σ(Xs : s < t), states x,y ∈ X, and times u, s > 0, we have

P(F | {Xt = y} ∩ H) = P(F | {Xt = y}).

Markov property of the reversed process follows from the observation, that

P(H | {Xt = y} ∩ F) =
P(H ∩ {Xt = y})P(F | H ∩ {Xt = y})

P{Xt = y}P(F | {Xt = y}) = P(H | {Xt = y}).

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be time-
homogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov
but not necessarily time-homogeneous.

Theorem 1.3. If X : Ω → XR is an irreducible, positive recurrent, stationary, and homogeneous Markov process
with transition kernel P : R → [0,1]X×X and invariant distribution π ∈ M(X), then the reversed Markov
process X̂τ : Ω →XR is also irreducible, positive recurrent, stationary, and homogeneous with the same invariant
distribution π and transition kernel P̂ : R → [0,1]X×X defined for all t ∈ T and states x,y ∈ X, as

P̂xy(t)≜
πy

πx
Pyx(t).

Further, for any finite sequence of states x ∈ Xn, finite sequence of times t ∈ Tn such that t1 < t2 < · · ·< tn, and
any shift τ ∈ R, we have

Pπ ∩n
i=1 {Xti = xi} = P̂π ∩n

i=1

{
X̂τ

ti
= xi

}
.

Proof. We observe that X̂τ
ti
= Xτ−ti for all i ∈ [n].

Step 1: We can verify that P̂ is a probability transition kernel.

• P̂xy ⩾ 0 for all t ∈ T.

• ∑y∈X P̂xy(t) = 1
πx

∑y∈X πyPyx(t) = 1.

Step 2: π is an invariant distribution for P̂, since for all states x,y ∈ X

∑
x∈X

πx P̂xy(t) = πy ∑
x∈X

Pyx(t) = πy.
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Step 3: We next wish to show that P̂ defined in the Theorem, is the probability transition kernel for the
reversed process. Since the forward process is stationary and time-homogeneous, we can write
the probability transition kernel for the reversed process as

P(
{

X̂τ
t+s = y

}
|
{

X̂τ
s = x

}
) =

Pπ {Xτ−t−s = y, Xτ−s = x}
Pπ {Xτ−s = x} =

πyPyx(t)
πx

.

This implies that the reversed process is time-homogeneous and has the desired probability tran-
sition kernel. Further, π is the invariant distribution for the reversed process and is the marginal
distribution for the reversed process at any time t, and hence the reversed process is also station-
ary.

Step 4: We now need to check if P̂ is irreducible. For an irreducible and positive recurrent Markov
process with invariant distribution π, we have πx > 0 for each state x ∈ X. Since the forward
process is irreducible, there exists a time t ⩾ 0 such that Pyx(t) > 0 for states x,y ∈ X, and hence
P̂xy(t) > 0 implying irreducibility of the reversed process.

Step 5: Now, we want to show that Pπ ∩n
i=1 {Xti = xi}= P̂π ∩n

i=1

{
X̂τ

ti
= xi

}
. From the Markov property

of the underlying processes and definition of P̂, we can write

Pπ

(
∩n

i=1 {Xti = xi}
)
=πx1

n−1

∏
i=1

Pxixi+1(ti+1 − ti) =πxn

n−1

∏
i=1

P̂xi+1xi ((τ− ti)− (τ− ti+1)) = P̂π

(
∩n

i=1

{
X̂τ

ti
= xi

})
.

This follows from the fact that πx1 Px1x2(t2 − t1) = πx2 P̂x2x1(t2 − t1), and hence we have

πx1

n−1

∏
i=1

Pxixi+1(ti+1 − ti) = πxn

n−1

∏
i=1

P̂xi+1xi (ti+1 − ti).

For any finite n ∈ N, we see that the joint distributions of (Xt1 , . . . , Xtn) and (Xs+t1 , . . . , Xs+tn) are
identical for all s ∈ T, from the stationarity of the process X. It follows that X̂τ is also stationary,
since (X̂τ

tn
, . . . , X̂τ

t1
) and (X̂τ

s+tn
, . . . , X̂τ

s+t1
) have the identical distribution.

1.1 Reversed Markov Chain

Corollary 1.4. If X : Ω →XZ is an irreducible, stationary, homogeneous Markov chain with transition matrix P
and invariant distribution π, then the reversed chain X̂τ : Ω →XZ is an irreducible stationary, time homogeneous
Markov chain with the same invariant distribution π, and transition matrix P̂ defined as P̂xy ≜

πy
πx

Pyx, for all
x,y ∈ X.

Corollary 1.5. Consider an irreducible Markov chain X with transition matrix P : X× X → [0,1]. If one can
find a non-negative vector α ∈M(X) and other transition matrix P∗ : X×X→ [0,1] that satisfies the detailed
balance equation for all x,y ∈ X

αxPxy = αyP∗
yx, (1)

then P∗ is the transition matrix for the reversed chain and α is the invariant distribution for both chains.

Proof. Summing both sides of the detailed balance equation (1) over x, we obtain that α is the invariant
distribution of the forward chain. Since P∗

yx =
αx Pxy

αy
, it follows that P∗ : X× X → [0,1] is the transition

matrix of the the reversed chain and α is the invariant distribution of the reversed chain.

1.2 Reversed Markov Process

Corollary 1.6. If X : Ω → XR is an irreducible, stationary, homogeneous Markov process with generator matrix
Q and invariant distribution π, then the reversed process X̂τ : Ω → XR is also an irreducible, stationary, homo-
geneous Markov process with same invariant distribution π and generator matrix Q̂ defined as Q̂xy ≜

πy
πx

Qyx,
for all x,y ∈ X.

Corollary 1.7. Let Q : X× X → R denote the rate matrix for an irreducible Markov process. If we can find
Q∗ : X×X→ R and a distribution π ∈M(X) such that for y ̸= x ∈ X, we have

πxQxy = πyQ∗
yx, and ∑

y ̸=x
Qxy = ∑

y ̸=x
Q∗

xy,

then Q∗ is the rate matrix for the reversed Markov process and π is the invariant distribution for both processes.
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2 Applications of Reversed Processes

2.1 Truncated Markov Processes

Definition 2.1. For a Markov process X : Ω → XR, and a subset A ⊆ X the boundary of A is defined as

∂A ≜
{

y /∈ A : Qxy > 0, for some x ∈ A
}

.

Example 2.2. Consider a birth-death process. Let A = {3,4}. Then, ∂A = {2,5}

Definition 2.3. Consider a transition rate matrix Q : X×X→ R on the countable state space X. Given
a nonempty subset A ⊆ X, the truncation of Q to A is the transition rate matrix QA : A × A → R, where
for all x,y ∈ A

QA
xy ≜

{
Qxy, y ̸= x,
−∑z∈A\{x} Qxz, y = x.

Proposition 2.4. Suppose X : Ω → XR is an irreducible, time-reversible CTMC on the countable state space X,
with generator Q : X× X → R and invariant distribution π ∈ M(X). Suppose the truncated Markov process
XA to a set of states A ⊆ X with generator matrix QA is irreducible. Then, XA : Ω → AR at stationarity is
time-reversible, with invariant distribution πA ∈M(A) defined as

πA
y ≜

πy

∑x∈A πx
, y ∈ A.

Proof. It is clear that πA is a distribution on state space A. We must show the reversibility with this
distribution πA. That is, we must show for all states x,y ∈ A

πA
x Qxy = πA

y Qyx.

However, this is true since the original chain is time reversible.

Example 2.5 (Limiting waiting room: M/M/1/K). Consider a variant of the M/M/1 queueing system
with load ρ ≜ λ

µ that has a finite buffer capacity of at most K customers. Thus, customers that arrive
when there are already K customers present are rejected. It follows that the CTMC for this system is
simply the M/M/1 CTMC truncated to the state space {0,1, . . . ,K}, and so it must be time-reversible
with invariant distribution

πi =
ρi

∑k
j=0 ρj

, 0 ⩽ i ⩽ k.

Example 2.6 (Two queues with joint waiting room). Consider two independent M/M/1 queues with
arrival and service rates λi and µi respectively for i ∈ [2]. Then, the joint distribution of two queues is

π(n1,n2) = (1 − ρ1)ρ
n1
1 (1 − ρ2)ρ

n2
2 , n1,n2 ∈ Z+.

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R wait-
ing customer then it leaves. Defining A ≜

{
n ∈ Z2

+ : n1 + n2 ⩽ R
}

, we observe that the joint Markov
porcess is restricted to the set of states A, and the invariant distribution for the truncated Markov pro-
cess is

π(n1,n2) =
ρn1

1 ρn2
2

∑(m1,m2)∈A ρm1
1 ρm2

2
, (n1,n2) ∈ A.
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