Lecture-23: Reversed Processes

1 Reversed Processes

Definition 1.1. Let $X: \Omega \rightarrow X^{T}$ be a stochastic process with index set T being an additive ordered group such as \mathbb{R} or \mathbb{Z}. Then, $\hat{X}^{\tau}: \Omega \rightarrow X^{T}$ defined as $\hat{X}_{t}^{\tau} \triangleq X_{\tau-t}$ for all $t \in T$ is the reversed process for some $\tau \in T$.

Remark 1. Note that a reversed process, doesn't have to have the identical distribution to the original process. For a reversible process X, the reversed process would have identical distribution.

Lemma 1.2. If $X: \Omega \rightarrow X^{T}$ is a Markov process, then the reversed process \hat{X}^{τ} is also Markov for any $\tau \in T$.
Proof. Let \mathcal{F}_{\bullet} be the natural filtration of the process X. From the Markov property of process X, for any event $F \in \sigma\left(X_{u}: u>t\right), H \in \sigma\left(X_{s}: s<t\right)$, states $x, y \in X$, and times $u, s>0$, we have

$$
P\left(F \mid\left\{X_{t}=y\right\} \cap H\right)=P\left(F \mid\left\{X_{t}=y\right\}\right) .
$$

Markov property of the reversed process follows from the observation, that

$$
P\left(H \mid\left\{X_{t}=y\right\} \cap F\right)=\frac{P\left(H \cap\left\{X_{t}=y\right\}\right) P\left(F \mid H \cap\left\{X_{t}=y\right\}\right)}{P\left\{X_{t}=y\right\} P\left(F \mid\left\{X_{t}=y\right\}\right)}=P\left(H \mid\left\{X_{t}=y\right\}\right) .
$$

Remark 2. Even if the forward process X is time-homogeneous, the reversed process need not be timehomogeneous. For a non-stationary time-homogeneous Markov process, the reversed process is Markov but not necessarily time-homogeneous.

Theorem 1.3. If $X: \Omega \rightarrow X^{\mathbb{R}}$ is an irreducible, positive recurrent, stationary, and homogeneous Markov process with transition kernel $P: \mathbb{R} \rightarrow[0,1]^{X \times X}$ and invariant distribution $\pi \in \mathcal{M}(X)$, then the reversed Markov process $\hat{X}^{\tau}: \Omega \rightarrow X^{\mathbb{R}}$ is also irreducible, positive recurrent, stationary, and homogeneous with the same invariant distribution π and transition kernel $\hat{P}: \mathbb{R} \rightarrow[0,1]^{X \times X}$ defined for all $t \in T$ and states $x, y \in \mathcal{X}$, as

$$
\hat{P}_{x y}(t) \triangleq \frac{\pi_{y}}{\pi_{x}} P_{y x}(t)
$$

Further, for any finite sequence of states $x \in X^{n}$, finite sequence of times $t \in T^{n}$ such that $t_{1}<t_{2}<\cdots<t_{n}$, and any shift $\tau \in \mathbb{R}$, we have

$$
P_{\pi} \cap_{i=1}^{n}\left\{X_{t_{i}}=x_{i}\right\}=\hat{P}_{\pi} \cap_{i=1}^{n}\left\{\hat{X}_{t_{i}}^{\tau}=x_{i}\right\} .
$$

Proof. We observe that $\hat{X}_{t_{i}}^{\tau}=X_{\tau-t_{i}}$ for all $i \in[n]$.
Step 1: We can verify that \hat{P} is a probability transition kernel.

- $\hat{P}_{x y} \geqslant 0$ for all $t \in T$.
- $\sum_{y \in X} \hat{P}_{x y}(t)=\frac{1}{\pi_{x}} \sum_{y \in x} \pi_{y} P_{y x}(t)=1$.

Step 2: π is an invariant distribution for \hat{P}, since for all states $x, y \in X$

$$
\sum_{x \in X} \pi_{x} \hat{P}_{x y}(t)=\pi_{y} \sum_{x \in X} P_{y x}(t)=\pi_{y} .
$$

Step 3: We next wish to show that \hat{P} defined in the Theorem, is the probability transition kernel for the reversed process. Since the forward process is stationary and time-homogeneous, we can write the probability transition kernel for the reversed process as

$$
P\left(\left\{\hat{X}_{t+s}^{\tau}=y\right\} \mid\left\{\hat{X}_{s}^{\tau}=x\right\}\right)=\frac{P_{\pi}\left\{X_{\tau-t-s}=y, X_{\tau-s}=x\right\}}{P_{\pi}\left\{X_{\tau-s}=x\right\}}=\frac{\pi_{y} P_{y x}(t)}{\pi_{x}} .
$$

This implies that the reversed process is time-homogeneous and has the desired probability transition kernel. Further, π is the invariant distribution for the reversed process and is the marginal distribution for the reversed process at any time t, and hence the reversed process is also stationary.
Step 4: We now need to check if \hat{P} is irreducible. For an irreducible and positive recurrent Markov process with invariant distribution π, we have $\pi_{x}>0$ for each state $x \in X$. Since the forward process is irreducible, there exists a time $t \geqslant 0$ such that $P_{y x}(t)>0$ for states $x, y \in \mathcal{X}$, and hence $\hat{P}_{x y}(t)>0$ implying irreducibility of the reversed process.

Step 5: Now, we want to show that $P_{\pi} \cap_{i=1}^{n}\left\{X_{t_{i}}=x_{i}\right\}=\hat{P}_{\pi} \cap_{i=1}^{n}\left\{\hat{X}_{t_{i}}^{\tau}=x_{i}\right\}$. From the Markov property of the underlying processes and definition of \hat{P}, we can write

$$
P_{\pi}\left(\cap_{i=1}^{n}\left\{X_{t_{i}}=x_{i}\right\}\right)=\pi_{x_{1}} \prod_{i=1}^{n-1} P_{x_{i} x_{i+1}}\left(t_{i+1}-t_{i}\right)=\pi_{x_{n}} \prod_{i=1}^{n-1} \hat{P}_{x_{i+1} x_{i}}\left(\left(\tau-t_{i}\right)-\left(\tau-t_{i+1}\right)\right)=\hat{P}_{\pi}\left(\cap_{i=1}^{n}\left\{\hat{X}_{t_{i}}^{\tau}=x_{i}\right\}\right) .
$$

This follows from the fact that $\pi_{x_{1}} P_{x_{1} x_{2}}\left(t_{2}-t_{1}\right)=\pi_{x_{2}} \hat{P}_{x_{2} x_{1}}\left(t_{2}-t_{1}\right)$, and hence we have

$$
\pi_{x_{1}} \prod_{i=1}^{n-1} P_{x_{i} x_{i+1}}\left(t_{i+1}-t_{i}\right)=\pi_{x_{n}} \prod_{i=1}^{n-1} \hat{P}_{x_{i+1} x_{i}}\left(t_{i+1}-t_{i}\right)
$$

For any finite $n \in \mathbb{N}$, we see that the joint distributions of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ and $\left(X_{s+t_{1}}, \ldots, X_{s+t_{n}}\right)$ are identical for all $s \in T$, from the stationarity of the process X. It follows that \hat{X}^{τ} is also stationary, since $\left(\hat{X}_{t_{n}}^{\tau}, \ldots, \hat{X}_{t_{1}}^{\tau}\right)$ and $\left(\hat{X}_{s+t_{n}}^{\tau}, \ldots, \hat{X}_{s+t_{1}}^{\tau}\right)$ have the identical distribution.

1.1 Reversed Markov Chain

Corollary 1.4. If $X: \Omega \rightarrow X^{\mathbb{Z}}$ is an irreducible, stationary, homogeneous Markov chain with transition matrix P and invariant distribution π, then the reversed chain $\hat{X}^{\tau}: \Omega \rightarrow X^{\mathbb{Z}}$ is an irreducible stationary, time homogeneous Markov chain with the same invariant distribution π, and transition matrix \hat{P} defined as $\hat{P}_{x y} \triangleq \frac{\pi_{y}}{\pi_{x}} P_{y x}$, for all $x, y \in X$.
Corollary 1.5. Consider an irreducible Markov chain X with transition matrix $P: X \times X \rightarrow[0,1]$. If one can find a non-negative vector $\alpha \in \mathcal{M}(X)$ and other transition matrix $P^{*}: X \times X \rightarrow[0,1]$ that satisfies the detailed balance equation for all $x, y \in \mathcal{X}$

$$
\begin{equation*}
\alpha_{x} P_{x y}=\alpha_{y} P_{y x}^{*} \tag{1}
\end{equation*}
$$

then P^{*} is the transition matrix for the reversed chain and α is the invariant distribution for both chains.
Proof. Summing both sides of the detailed balance equation (1) over x, we obtain that α is the invariant distribution of the forward chain. Since $P_{y x}^{*}=\frac{\alpha_{x} P_{x y}}{\alpha_{y}}$, it follows that $P^{*}: X \times X \rightarrow[0,1]$ is the transition matrix of the the reversed chain and α is the invariant distribution of the reversed chain.

1.2 Reversed Markov Process

Corollary 1.6. If $X: \Omega \rightarrow X^{\mathbb{R}}$ is an irreducible, stationary, homogeneous Markov process with generator matrix Q and invariant distribution π, then the reversed process $\hat{X}^{\tau}: \Omega \rightarrow X^{\mathbb{R}}$ is also an irreducible, stationary, homogeneous Markov process with same invariant distribution π and generator matrix \hat{Q} defined as $\hat{Q}_{x y} \triangleq \frac{\pi_{y}}{\pi_{x}} Q_{y x}$, for all $x, y \in \mathcal{X}$.
Corollary 1.7. Let $Q: X \times X \rightarrow \mathbb{R}$ denote the rate matrix for an irreducible Markov process. If we can find $Q^{*}: X \times X \rightarrow \mathbb{R}$ and a distribution $\pi \in \mathcal{M}(X)$ such that for $y \neq x \in X$, we have

$$
\pi_{x} Q_{x y}=\pi_{y} Q_{y x}^{*}, \quad \text { and } \quad \sum_{y \neq x} Q_{x y}=\sum_{y \neq x} Q_{x y}^{*}
$$

then Q^{*} is the rate matrix for the reversed Markov process and π is the invariant distribution for both processes.

2 Applications of Reversed Processes

2.1 Truncated Markov Processes

Definition 2.1. For a Markov process $X: \Omega \rightarrow X^{\mathbb{R}}$, and a subset $A \subseteq X$ the boundary of A is defined as

$$
\partial A \triangleq\left\{y \notin A: Q_{x y}>0, \text { for some } x \in A\right\} .
$$

Example 2.2. Consider a birth-death process. Let $A=\{3,4\}$. Then, $\partial A=\{2,5\}$
Definition 2.3. Consider a transition rate matrix $Q: X \times X \rightarrow \mathbb{R}$ on the countable state space \mathcal{X}. Given a nonempty subset $A \subseteq X$, the truncation of Q to A is the transition rate matrix $Q^{A}: A \times A \rightarrow \mathbb{R}$, where for all $x, y \in A$

$$
Q_{x y}^{A} \triangleq \begin{cases}Q_{x y}, & y \neq x \\ -\sum_{z \in A \backslash\{x\}} Q_{x z}, & y=x\end{cases}
$$

Proposition 2.4. Suppose $X: \Omega \rightarrow X^{\mathbb{R}}$ is an irreducible, time-reversible CTMC on the countable state space X, with generator $Q: X \times X \rightarrow \mathbb{R}$ and invariant distribution $\pi \in \mathcal{M}(X)$. Suppose the truncated Markov process X^{A} to a set of states $A \subseteq X$ with generator matrix Q^{A} is irreducible. Then, $X^{A}: \Omega \rightarrow A^{\mathbb{R}}$ at stationarity is time-reversible, with invariant distribution $\pi^{A} \in \mathcal{M}(A)$ defined as

$$
\pi_{y}^{A} \triangleq \frac{\pi_{y}}{\sum_{x \in A} \pi_{x}}, \quad y \in A
$$

Proof. It is clear that π^{A} is a distribution on state space A. We must show the reversibility with this distribution π^{A}. That is, we must show for all states $x, y \in A$

$$
\pi_{x}^{A} Q_{x y}=\pi_{y}^{A} Q_{y x}
$$

However, this is true since the original chain is time reversible.

Example 2.5 (Limiting waiting room: $\mathbf{M} / \mathbf{M} / \mathbf{1} / \mathrm{K}$). Consider a variant of the $M / M / 1$ queueing system with load $\rho \triangleq \frac{\lambda}{\mu}$ that has a finite buffer capacity of at most K customers. Thus, customers that arrive when there are already K customers present are rejected. It follows that the CTMC for this system is simply the $M / M / 1$ CTMC truncated to the state space $\{0,1, \ldots, K\}$, and so it must be time-reversible with invariant distribution

$$
\pi_{i}=\frac{\rho^{i}}{\sum_{j=0}^{k} \rho^{j}}, \quad 0 \leqslant i \leqslant k .
$$

Example 2.6 (Two queues with joint waiting room). Consider two independent $M / M / 1$ queues with arrival and service rates λ_{i} and μ_{i} respectively for $i \in[2]$. Then, the joint distribution of two queues is

$$
\pi\left(n_{1}, n_{2}\right)=\left(1-\rho_{1}\right) \rho_{1}^{n_{1}}\left(1-\rho_{2}\right) \rho_{2}^{n_{2}}, \quad n_{1}, n_{2} \in \mathbb{Z}_{+} .
$$

Suppose both the queues are sharing a common waiting room, where if arriving customer finds R waiting customer then it leaves. Defining $A \triangleq\left\{n \in \mathbb{Z}_{+}^{2}: n_{1}+n_{2} \leqslant R\right\}$, we observe that the joint Markov porcess is restricted to the set of states A, and the invariant distribution for the truncated Markov process is

$$
\pi\left(n_{1}, n_{2}\right)=\frac{\rho_{1}^{n_{1}} \rho_{2}^{n_{2}}}{\sum_{\left(m_{1}, m_{2}\right) \in A} \rho_{1}^{m_{1}} \rho_{2}^{m_{2}}}, \quad\left(n_{1}, n_{2}\right) \in A .
$$

