
Lecture-25: Martingales

1 Martingales

Definition 1.1. Let (Ω,F, P) be a probability space. A filtration is an increasing sequence of σ-fields
denoted by F• = (Fn ⊆ F : n ∈ N), with nth σ-field denoted by Fn.

Definition 1.2. For a discrete stochastic process X : Ω → RN, its natural filtration is defined as Fn ≜
σ(X1, . . . , Xn).

Definition 1.3. A random sequence X : Ω → RN of random variables is said to be adapted to the
filtration F• if σ(Xn) ⊆ Fn for all n ∈ N.

Remark 1. For any random sequence X adapted to a filtration F•, we also have σ(X1, . . . , Xn) ⊆ Fn for
each n ∈ N.

Definition 1.4. A discrete stochastic process X : Ω → RN is said to be a martingale with respect to the
filtration F• if it satisfies the following three properties for each n ∈ N.

i Integrability. E |Xn| < ∞.

ii Adaptability. σ(Xn) ⊆ Fn.

iii Unbiasedness. E[Xn+1 | Fn] = Xn.

If the equality in third condition is replaced by ⩽ or ⩾, then the process is called supermartingale or
submartingale, respectively.

Corollary 1.5. For a martingale X adapted to a filtration F•, we have EXn = EX1 for each n ∈ N.

Example 1.6 (Simple random walk). Let ξ : Ω → RN be an independent random sequence with mean
Eξi = 0 and E|ξi|< ∞ for each i ∈N. Let F• be the natural filtration of the random sequence ξ. Consider
the random walk X : Ω → RN with step-size sequence ξ such that Xn ≜ ∑n

i=1 ξi for each n ∈ N, then X
is adapted to F•. From the linearity of expectation and the finiteness of finitely many individual terms,
we have E |Xn|⩽ ∑n

i=1 E |ξi| < ∞. Further, we have

E[Xn+1|Fn] = E[Xn + ξn+1 | Fn] = Xn.

Thus, the random walk X is a martingale with respect to filtration F•.

Example 1.7 (Product martingale). Let ξ : Ω → RN be an independent random sequence with mean
Eξi = 1 and E|ξi|< ∞ for each i ∈N. Let F• be the natural filtration of random sequence ξ. Consider the
random sequence X : Ω → RN defined as Xn ≜ ∏n

i=1 ξi for each n ∈ N, then X is adapted to F•. From
the independence and finiteness of finitely many individual terms, we have E |Xn| = ∏n

i=1 Eξi < ∞.
Further, we have

E[Xn+1|Fn] = E[Xnξn+1|Fn] = Xn.

Thus, the random sequence X is a martingale with respect to filtration F•.

Example 1.8 (Branching process). Consider a population where each individual i can produce an inde-
pendent random number of offsprings Zi in its lifetime, with a common distribution P : Z+ → [0,1] and
finite mean µ ≜ ∑j∈N jPj < ∞. Let Xn denote the size of the nth generation, which is same as the number
of offsprings generated by (n − 1)th generation. The discrete stochastic process X : Ω → ZN

+ is called a
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branching process. Let X0 = 1 and consider the natural filtration F• of X. We can write Xn = ∑
Xn−1
i=1 Zi.

Conditioning on Fn−1 yields,

E[Xn |Fn−1] =E[
Xn−1

∑
i=1

Zi |Fn−1] =E[ ∑
i∈N

Zi1{i⩽Xn−1}|Fn−1] = ∑
i∈N

E[Zi |Fn−1]1{i⩽Xn−1} =
Xn−1

∑
i=1

µ= µXn−1.

Applying expectation on both sides, and by induction on n, we get E[Xn] = µn. Consider a positive
random sequence Y : Ω → RN

+ defined by Yn ≜ Xn
µn for each n ∈ N, adapted to F•. Since X is a non-

negative sequence, we have E |Yn| = EYn = 1. Further,

E[Yn+1|Fn] =
1

µn+1 E[Xn+1 | Fn] =
Xn

µn = Yn.

It follows that Y is a martingale with respect to filtration F•.

Example 1.9 (Doob’s Martingale). Consider an arbitrary random sequence Y : Ω → RN with associ-
ated natural filtration F•, and an arbitrary random variable Z : Ω → R such that E |Z|< ∞. We define a
random sequence X : Ω → RN as Xn ≜ E[Z|Fn] for each n ∈ N. From the definition of conditional ex-
pectation, X is adapted to F•. Further, from the Jensen’s inequality for conditional expectation applied
to the convex absolute function, we get E |Xn| ⩽ E[E[|Z| | Fn]] = E |Z| < ∞. Further, from the tower
property of conditional expectation

E[Xn+1|Fn] = E[E[Z|Fn+1]|Fn] = E[Z|Fn] = Xn.

Thus, X is a martingale with respect to F•, and called a Doob-type martingale.

Example 1.10 (Centralized Doob sequence). For any sequence of random variables Y : Ω → RN with
E |Yn| < ∞ for all n ∈ N and its natural filtration F•, the centralized random variable Yi − E[Yi | Fi−1]
has a zero mean for each i ∈ N. Consider, the centralized zero mean sequence X : Ω → RN defined by
Xn ≜ ∑n

i=1(Yi − E[Yi | Fi−1]) for each n ∈ N. By the definition of condition expectation and filtration,
the random sequence X is adapted to the filtration F•. From the triangle inequality and the conditional
Jensen’s inequality applied to convex absolute function, we get

E |Xn|⩽
n

∑
i=1

E |Yi − E[Yi|Fi−1]|⩽
n

∑
i=1

(
E |Yi|+ E |E[Yi | Fi−1]|

)
⩽ 2

n

∑
i=1

E |Yi| < ∞.

Further, from the linearity and the tower property of conditional expectation, we have

E[Xn+1|Fn] = E[Xn + Yn+1 − E[Yn+1 | Fn] | Fn] = Xn.

Thus, X is a martingale with respect to this filtration F•, and called centralized Doob martingale.

Lemma 1.11. Consider a martingale X : Ω → RN adapted to a filtration F• = (Fn ⊆ F : n ∈ N) defined on
the probability space (Ω,F, P), and a convex function f : R → R such that E | f (Xn)| < ∞ for all n ∈ N. Then,
the random sequence Y : Ω → RN defined by Yn ≜ f (Xn) for each n ∈ N, is a submartingale with respect to the
filtration F•.

Proof. We observe that Y is adapted to the filtration F• and integrable by hypothesis. From the condi-
tional Jensen’s inequality applied to convex function f , we get

E[ f (Xn+1) | Fn]⩾ f (E[Xn+1 | Fn]) = f (Xn).

Corollary 1.12. Consider a random sequence X : Ω → RN defined on the probability space (Ω,F, P), with its
natural filtration F•. Let a ∈ R be a constant, and consider two random sequences Y : Ω → RN

+ and Z : Ω → RN

generated by X, such that for each n ∈ N,

Yn ≜ (Xn − a)+ = (Xn ∨ a)− a, Zn ≜ Xn ∧ a.
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i If X is a submartingale with respect to F•, then so is Y with respect to F•.

ii If X is a supermartingale with respect to F•, then so is Z with respect to F•.

Proof. Clearly, both sequences Y and Z are adapted to F•. Defining x 7→ f (x) ≜ (x − a)+ and x 7→
g(x) ≜ x ∧ a for all x ∈ R, we observe that f is convex and non-decreasing and g is concave and non-
decreasing. The function f is positive, and hence E | f (Xn)| = E f (Xn) ⩽ E |Xn| + |a| < ∞. We also
observe that E |g(Xn)|⩽ E |Xn| < ∞.

i From the conditional Jensen’s inequality applied to the convex non-decreasing function f and the
fact that E[Xn+1 | Fn]⩾ Xn, we get E[ f (Xn+1) | Fn]⩾ f (E[Xn+1 | Fn])⩾ f (Xn).

ii From the conditional Jensen’s inequality applied to the concave non-decreasing function f and the
fact that E[Xn+1 | Fn]⩽ Xn, we get E[g(Xn+1) | Fn]⩽ g(E[Xn+1 | Fn])⩽ g(Xn).

1.1 Stopping Times

Consider a discrete filtration F• = (Fn ⊆ F : n ∈ Z+).

Definition 1.13. A positive integer valued, possibly infinite, random variable τ : Ω → N ∪ {∞} is said
to be a random time with respect to the filtration F•, if the event {τ = n} ∈ Fn for each n ∈ N. If
P{τ < ∞} = 1, then the random time τ is said to be a stopping time.

Definition 1.14. A random sequence H : Ω → RN is predictable with respect to the the filtration F•, if
σ(Hn) ⊆ Fn−1 for each n ∈ N. For a process X adapted to F•, we define

(H · X)n ≜
n

∑
m=1

Hm(Xm − Xm−1).

Theorem 1.15. Consider a supermartingale sequence X : Ω →RN and a predictable sequence H : Ω →RN
+ with

respect to a filtration F•, where each Hn is non-negative and bounded. Then the random sequence Y : Ω → RN

defined by Yn ≜ (H · X)n for each n ∈ N is a supermartingale with respect to F•.

Proof. From the definition of Y, it follows that Y is adapted to F•. From the tower property of conditional
expectation, and predictability, non-negativity, and boundedness of H, we obtain

E |Yn|⩽
n

∑
m=1

E[HmE[|Xm − Xm−1| | Fm−1]]⩽ sup
m⩽n

Hm

n

∑
m=1

(E |Xm|+ E |Xm−1|) < ∞.

Further, from the definition of Y, the predictability of H, and the supermartingale property of X,

E[Yn+1 | Fn] = E[Hn+1(Xn+1 − Xn) + Yn | Fn] = Hn+1(E[Xn+1|Fn]− Xn) + Yn ⩽ Yn.

1.2 Stopped process

Definition 1.16. Consider a discrete stochastic process X : Ω → RN adapted to a discrete filtration F•.
Let τ : Ω → N be a random time for the filtration F•, then the stopped process Xτ : Ω → RN is defined
for each n ∈ N as

Xτ
n ≜ Xτ∧n = Xn1{n⩽τ} + Xτ1{n>τ}.

Proposition 1.17. Let X : Ω → RN be a martingale with a discrete filtration F•. If τ : Ω → N is an integer
random time for the filtration F•, then the stopped process Xτ is a martingale.

Proof. Consider a random sequence H : Ω → {0,1}N defined by Hn ≜ 1{n⩽τ} for each n ∈ N. Then H
is a non-negative and bounded sequence. Further H is predictable with respect to F•, since the event

{n ⩽ τ} = {τ > n − 1} = {τ ⩽ n − 1}c = (∪n−1
i=0 {τ = i})c = ∩n−1

i=0 {τ ̸= i} ∈ Fn−1.

In terms of the non-negative, predictable, and bounded sequence H, we can write the stopped process

Xτ∧n = X0 +
τ∧n

∑
m=1

(Xm − Xm−1) = X0 +
n

∑
m=1

1{m⩽τ}(Xm − Xm−1) = X0 + (H · X)n.

From the previous theorem, it follows that Xτ is a martingale, and we have EXτ∧n = EXτ∧1 = EX1.
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Remark 2. For any martingale X : Ω → RN and a stopping time τ : Ω → N adapted to F•, we have
EXτ∧n = EX1, for all n ∈ N. Since τ is finite almost surely, it follows that the stopped process Xτ

converges almost surely to Xτ , i.e. P{limn∈N Xτ∧n = Xτ} = 1.

We are interested in knowing under what conditions will we have convergence in mean.

Theorem 1.18 (Martingale stopping theorem). Let X : Ω → RN be a martingale and τ : Ω → N be a
stopping time, both adapted to a common discrete filtration F•. If either of the following conditions holds true.

(i) τ is bounded,

(ii) Xτ∧n is uniformly bounded,

(iii) Eτ < ∞, and for some real positive K, we have supn∈N E[|Xn − Xn−1| | Fn−1] < K.

Then Xτ is integrable and the stopped process Xτ converges in mean to Xτ , i.e. limn∈N EXτ∧n = EXτ = EX1,

Proof. We show this is true for all three cases.

(i) Let K be the bound on τ then for all n ⩾ K, we have Xτ∧n = Xτ , and hence it follows that EX1 =
EXτ∧n = EXτ for all n ⩾ K.

(ii) Dominated convergence theorem implies the result.

(iii) We can write the difference Xτ∧n − X0 = ∑τ
m=11{m⩽n}(Xm − Xm−1) using the telescopic sum.

From triangle inequality for the absolute function and the fact that 0 ⩽ 1{m⩽n} ⩽ 1, we can upper
bound the difference |Xτ∧n| − |X0| ⩽ |Xτ∧n − X0| ⩽ ∑τ

m=1 |Xm − Xm−1| . We define non-negative
predictable sequence H : Ω →{0,1}N as Hn ≜ 1{n⩽τ} for n ∈ N. From the linearity of expectation,
the monotone convergence theorem, the tower property of conditional expectation, predictability
of H, and theorem hypothesis, we can upper bound the mean of this term as

E
τ

∑
m=1

|Xm − Xm−1| = ∑
m∈N

E[HmE[|Xm − Xm−1| | Fm−1]]⩽ KE ∑
m∈N

Hm = KEτ.

Since τ is integrable, we observe that Xτ∧n is uniformly bounded by an integrable random vari-
able. The result follows from dominated convergence theorem.

Corollary 1.19 (Wald’s Equation). If τ is a stopping time for the discrete i.i.d. random sequence X : Ω → RN

with E |X| < ∞ and Eτ < ∞, then

E
τ

∑
i=1

Xi = EτEX1.

Proof. Let µ = EX and define a random sequence Z : Ω → RN such that Zn ≜ ∑n
i=1(Xi − µ) for each

n ∈ N, Then Z is a martingale adapted to natural filtration of X, and

E[|Zn − Zn−1| | Fn−1] = E[|Xn − µ|]⩽ µ + E |X1| .

Thus, supn∈N E[|Zn − Zn−1| | Fn−1] < ∞, and from the Martingale stopping theorem, we have EZτ =
EZ1 = 0. The result follows from the observation that E[Zτ ] = E∑τ

i=1 Xi − µEτ.
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