
Lecture-26: Martingale Convergence Theorem

1 Martingale Convergence Theorem

Before we state and prove martingale convergence theorem, we state some results which will be used
in the proof of the theorem.

Lemma 1.1. If X : Ω → RN is a submartingale and τ : Ω → N is a stopping time with respect to a filtration
F•, such that there exists some N ∈ N such that P{τ ⩽ N} = 1. Then

EX1 ⩽ EXτ ⩽ EXN .

Proof. Recall that for any random time τ, the stopped process Xτ is submartingale Heence EXτ ⩾ EX1.
Since τ is a stopping time, we see that for the event {τ = k} for any k ⩽ N

E[XN1{τ=k}|Fk]⩾ Xk1{τ=k} = Xτ1{τ=k}.

Result follows by taking expectation on both sides and summing over k. That is,

EXN = E
N

∑
k=1

XN1{τ=k} ⩾ E
N

∑
k=1

Xτ1{τ=k} = EXτ .

Definition 1.2. Consider a discrete random process X : Ω → RZ+ adapted to the filtration F• = (Fn ⊆
F : n ∈ Z+). Let N0 ≜ 0. For the two thresholds a < b, we define the stopping times corresponding to
kth downcrossing and upcrossing times as

N2k−1 ≜ inf{m > N2k−2 : Xm ⩽ a} , N2k ≜ inf{m > N2k−1 : Xm ⩾ b} .

We next define the indicator to the event that the process is in kth upcrossing transition from a to b at
time m,

Hm ≜ ∑
k∈N

1{N2k−1<m⩽N2k}.

The number of upcrossings completed in time n is defined by

Un ≜ sup{k ∈ N : N2k ⩽ n} = ∑
k∈N

1{N2k⩽n}.

Remark 1. For each k ∈ N, N2k, N2k−1 are integer stopping times, and hence we have

{N2k−1 < m ⩽ N2k} = {N2k−1 ⩽ m − 1} ∩ {N2k ⩽ m − 1}c ∈ Fm−1.

It follows that σ(Hm)⊆ Fm−1. Hence, the event that the process X is in an upcrossing transition at time
m is predictable. Since N0 = 0, it follows that N1 ⩾ 1 and H1 = 0.

Lemma 1.3 (Upcrossing inequality). Let X : Ω → RN be a submartingale with respect to a filtration F•.
Then, we have

(b − a)EUn ⩽ E(Xn − a)+

Proof. Define a random sequence Y : Ω → RN such that Yn ≜ a + (Xn − a)+ = Xn ∨ a for each n ∈ N.
Since x 7→ f (x) = x ∧ a is a convex function and X is a submartingale w.r.t. F•, Y is also a submartingale
with respect to F•. Since each upcrossing has a gain lower bounded by b − a, we get

(H · Y)n =
n

∑
m=1

∑
k∈N

1{N2k−1<m⩽N2k}(Ym − Ym−1) =
Un

∑
k=1

(YN2k − YN2k−1)⩾ (b − a)Un.
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Let Km ≜ 1 − Hm for each m ∈ N. Since H is predictable, then so is K with respect to F•, and

Yn − Y0 =
n

∑
i=1

(Yi − Yi−1) =
n

∑
i=1

(Hi + Ki)(Yi − Yi−1) = (H · Y)n + (K · Y)n.

Since H : Ω → {0,1}N is a non-negative and bounded sequence, so is K : Ω → {0,1}N. Further, since Y
is a submartingale, so is ((K · Y)n : n ∈ Z+). Therefore, we can write

E[(K · Y)n]⩾ E[(K · Y)1] = E[K1(Y1 − Y0)] = E[Y1 − Y0]⩾−E(X0 − a)+.

Therefore, it follows that

E(Yn − Y0) = E(H · Y)n + E(K · Y)n ⩾ E(H · Y)n − E(X0 − a)+ ⩾ (b − a)EUn − E(X0 − a)+.

The result follows from the fact that EYn − EY0 = E(Xn − a)+ − E(X0 − a)+.

Theorem 1.4 (Martingale convergence theorem). If X : Ω →RN is a submartingale with respect to filtration
F• such that supn∈NEX+

n < ∞, then limn∈NXn = X∞ a.s with E|X∞| < ∞, i.e. X converges almost surely in
both value and mean.

Proof. Since (X − a)+ ⩽ X+ + |a|, it follows from upcrossing inequality that

EUn ⩽
EX+

n + |a|
b − a

.

The number of upcrossings Un increases with n, however the mean EUn is uniformly bounded above
for each n ∈ N. Hence, limn∈N EUn exists and is finite.

Let U ≜ limn∈N Un and since EU ⩽ supn
EX+

n +|a|
b−a < ∞, we have U < ∞ almost surely. This conclusion

implies
Pa,b∈Q∪

{
liminfn∈NXn < a < b < limsupn∈NXn

}
= 0.

From the above probability, we have almost sure equality limsupn∈NXn = liminfn∈NXn. That is, the
limn∈N Xn exists almost surely.

Fatou’s lemma guarantees
EX+

∞ ⩽ liminfn∈NEX+
n < ∞,

which implies X∞ < ∞ almost surely. From the submartingale property of Xn, it follows that

EX−
n = EX+

n − EXn ⩽ EX+
n − EX0.

From Fatou’s lemma, we get

EX−
∞ ⩽ liminfn∈NEX−

n ⩽ supn∈NEX+
n − EX0 < ∞.

This implies X∞ > −∞ almost surely, completing the proof.

Example 1.5 (Polya’s Urn Scheme). Consider a discrete time stochastic process ((Bn,Wn) : n ∈ N),
where Bn,Wn respectively denote the number of black and white balls in an urn after n ∈ N draws. At
each draw n, balls are uniformly sampled from this urn. After each draw, one additional ball of the same
color to the drawn ball, is returned to the urn. We are interested in characterizing evolution of this urn,
given initial urn content (B0,W0). Let ξi be a random variable indicating the outcome of the ith draw
being a black ball. For example, if the first drawn ball is a black, then ξ1 = 1 and (B1,W1) = (B0 + 1,W0).
In general,

Bn = B0 +
n

∑
i=1

ξi = Bn−1 + ξn, Wn = W0 +
n

∑
i=1

(1 − ξi) = Wn−1 + 1 − ξn.

It is clear that Bn +Wn = B0 +W0 + n. Let Fn = σ(B0,W0,ξ1, . . . ,ξn) be the σ-field generated by the first n
indicators to black draws. We are interested in limiting ratio of black balls. We represent the proportion
of black balls after n draws by

Xn =
Bn

Bn + Wn
=

Bn

B0 + W0 + n
.
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It is clear that E[ξn+1|Fn] = Xn. Using this fact, we observe that X : Ω → [0,1]N is a martingale adapted
to filtration F• = (Fn : n ∈ N), since

E[Xn+1|Fn] =
1

B0 + W0 + n + 1
E[Bn+1|Fn] =

Bn + Xn
Bn
Xn

+ 1
= Xn.

For each n ∈ N, we have EX+
n = EXn ⩽ 1. From Martingale convergence theorem, it follows that

limn∈N Xn exists almost surely. Further, from the Martingale property, we have for all n ∈ N

EXn = X0 =
B0

B0 + W0
.

It follows that limn∈N Xn = X0 almost surely.
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