Lecture-27: Martingale Concentration Inequalities

1 Introduction

Consider a probability space (Q,F,P) and a discrete filtration Fo = (F, C F:n € N). Let X : Q — RN
be discrete random process and stopping time 7 : (3 — IN, both adapted to the filtration F,.

Remark 1. Recall that for a submartingale X and a stopping time T bounded above by 1, both adapted
to the same filtration F,, we have EX; < EX; <[EX,,.

Theorem 1.1 (Kolmogorov’s inequality for submartingales). For a non-negative submartingale X : (3 —

RN and a > 0,
P{maxXl- > a} < IE[X"]
i€[n] a

Proof. We define a random time 7, 2 inf{i € N : X; > a} and stopping time T = 7, A . It follows that,

{maxXi > a} =Ujem {Xi > a} = {X; > a}.
ic[n]

Using this fact and Markov inequality, we get P {maxie[n] X; > a} =P{X:>a} < %. Since T < nis
a bounded stopping time, result follows from the Remark [i} O

Corollary 1.2. For a martingale X and positive constant a,

E|X EX?2
P{maxXi|>a}<|a”|, P{max|X,~|>a}g azn.

i[n] i€[n]

Proof. The proof the above statements follow from and Kolmogorov’s inequality for submartingales,
and by considering the convex functions f(x) = |x| and f(x) = x2. O

Theorem 1.3 (Strong Law of Large Numbers). Let S: Q) — RN be a random walk with i.i.d. step size X
having finite mean . If the moment generating function t — M(t) £ E[e'X1] exists for all t € Ry, then

P{limsn—y} =1
nelN n
A ot(u+e)

Proof. For a given € > 0, we define the following map t — g(t) = VOR for allt € Ry. Then, it is clear
that g(0) =1 and from the fact that M(0) =1 and M’'(0) = 4 = EX;, we obtain

M(0)(p +€) — M'(0)

¢'(0) = MZ(0) =e>0.

Hence, there exists a value fy > 0 such that g(tp) > 1. We now show that 57” can be as large as i + € only
finitely often. To this end, note that

Susprelc 2 (to)" )
n ol =\ M(t) = 8\0
However, Y, = 1\22,07(5:0) =TT, A‘fz—z) is a product of independent non negative random variables with

unit mean, and hence is a non-negative martingale with sup, [EY;, = 1. By martingale convergence
theorem, the limit lim,, <y Yy, exists and is finite.



Since g(tp) > 1, it follows from () that

P { Sn—n > + € for an infinite number of n} =0.

otlu—e)

a and noting that since f (0) =1and f'(0) = —e, there exists
a value #p < 0 such that f(to) > 1, we can prove in the same manner that

Similarly, defining the function f(t) £

p { Sn—" < p — € for an infinite number of n} =0.

Hence, result follows from combining both these results, and taking limit of arbitrary € decreasing to
zero. O

Definition 1.4. A discrete random process X : (2 — RN with distribution function F, £ Fx, for each
n € N, is said to be uniformly integrable if for every € > 0, there is a y. such that for each n € N

EllX| L o] = [ IxldF(x) <e.

[x|>Ye

Lemma 1.5. If X : Q — RN is uniformly integrable then there exists finite M such that E|X,| < M for all
n€N.

Proof. Let y; be as in the definition of uniform integrability. Then

1E|Xn|:/ |x|dPn(x)+/ Ix|dF, (x) < y1 + 1.
Jx|<y Jx|>y1

O
1.1 Generalized Azuma Inequality
Lemma 1.6. For a zero mean random variable X with support [—w, B] and any convex function f
EFO0 < L p-a) + o 1(p)
a+p a+p
Proof. From convexity of f, any point (X,Y) on the line joining points (—«, f(—a)) and (B, f(B)) is
f(B) = f(=«)
= f(— LA S )
Y= fla) + (X ) R > £(X)
Result follows from taking expectations on both sides. O

Lemma 1.7. For 0 € [0,1] and 8 2 1 — 6, we have 0¢%* + fe=9% < ¢¥*/8 for all x € R.
Proof. Defining « =20 — 1, = %, and f(a, ) = coshf + asinhf — "B +F*/2 e can write

0ol 1 geex — /8 - 10 aap y (L28) rsap _ 272 pafp(, )

2 2

Therefore, we need to show that f(«,8) <O for all « € [-1,1] and B € R. This inequality is true for
|a| =1 and sufficiently large B. Therefore, it suffices to show this for f < M for some M. We take the
partial derivative of f(«, ) with respect to variables «,  and equate it to zero to get the stationary point,

sinh + acoshf = (a + ,B)e"‘ﬁ*ﬁz/z, sinh B = 133”4”!32/2.

If B # 0, then the stationary point satisfies 1 + acothf =1+ %, with the only solution being g = tanh .

By Taylor series expansion, it can be seen that there is no other solution to this equation other than
B = 0. Since f(«,0) =0, the lemma holds true. O

Proposition 1.8. Let X be a zero-mean martingale with respect to filtration Fo, such that —a < X, — X;,—1 < B
for each n € IN. Then, for any positive values a and b

P{X, > a+ bn for some n} < exp (—({ffl;)z) ()

2



Proof. Let Xo =0 and ¢ > 0, then we define a random sequence W : Q — RN adapted to filtration F,
such that
W, A ec(anafbn) _ Wnilefcbec(anX,,_l)’ nez,.

We will show that W is a supermartingale with respect to the filtration JF,. It is easy to see that (W) C
Fy for each n € IN. We can also see that [E |W,| < oo for all n. Further, we observe

E[W,|F,_1] = Wy_1e”PE[efKn=Xn1)|F, 4],

Applying Lemma [1.6[to the convex function f(x) = ¥, replacing expectation with conditional expec-
tation, the fact that E[X,, — X,,_1|F,—-1] =0, and setting 6 = (a_"ﬁ—ﬁ) € [0,1], we obtain that

(X~ X1) | 71]<M _ ec@+p)0 | goe(atP)l < o (a+p) /8,

a+p
The second inequality follows from Lemmawith x=c(a+p)and 6 = 5 € [0,1]. Fixing the value
c= 382 we obtain
(a+B)

2(atp)?
]E[Wnlgnfl] < anle_cm— 8 = Wy-1.

Thus, W is a supermartingale. For a fixed positive integer k, define the bounded stopping time 7 by
T2inf{n € N: X, >a+bn} Ak

Now, using Markov inequality and optional stopping theorem, we get

__8ab

P{X:>a+bt}=P{W;: > 1} <E[W{] <E[Wy] =e “=¢ @7,

__8ab
The above inequality is equivalent to P {X, > a + bn for some n <k} < e («#”. Since, the choice of k

was arbitrary, the result follow from letting k — oc. O

Theorem 1.9 (Generalized Azuma inequality). Let X be a zero-mean martingale, such that —a < X, —
Xy—1 < B forall n € IN. Then, for any positive constant ¢ and integer m

_ 2mc? 2mc?
P{Xy > ncforsomen >m} <e @+h?, P{Xy < —ncforsomen>m} <e @7,

Proof. Observe that if there is an n such that n > m and X, > nc then for that n, we have X,, > nc >
% + . Using this fact and previous proposition for a = ¢ and b = §, we get

mc ¢ -
P{X,, > ncforsomen >m} < P{Xn > - + in for some n} <e @p?,

This proves first inequality, and second inequality follows by considering the martingale —X. O
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