Lecture-29: Random Walks

1 Introduction

Definition 1.1. Let X : Q — XN be an i.i.d. step-size sequence, where X C R and E | X;| < co. We define

So £ 0 and the location of a particle after n steps as Sy, = Y1 Xi. Then the sequence S : Q) — RN is called
a random walk process. If the step-size alphabet X = {—1,1}, then the random walk is called simple.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative
random variables indicating inter-renewal times, then S;, is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite n € IN, the joint distributions of finite sequence (Xq,Xp,- -+, Xn)
and the reversed sequence (X, X, 1, -+, X1) are identical, for any i.i.d. step-size sequence X : Q — XN,

Proof. Since X : Q — XN is a sequence of i.i.d. random variables, it is exchangeable. The reversed se-
quence is (Xy (1), -+, Xy(n)) Where o : [n] — [n] is permutation with o'(i) =n —i + 1. O

Corollary 2.2. For any random walk S : Q — RN, the distributions of S and Sy, — S,,_y are identical for any
k e [n].

Proof. Using duality principle, we can write the following equality for any x € R and step k € [n]

k k n
P{skgx}:P{ Xigx}:P{ZXnngx}:P{ Y X,-gx}:P{sn—snkgx}.
i=1 i=1 i=n—k+1

O

Corollary 2.3. For any random walk S : Q — RN, the joint distributions of finite sequence (Si,...,Sy) and
(Su — Sp—1,...,Sn) are identical for any finite n € IN.

Proof. Since X is i.i.d. , it is exchangeable. We take an n-permutation ¢ such that (i) =n —i+1 for
i € [n]. Then, we observe that the second sequence is (Xy(1), Xo(1) + Xo(2), - Liz1 Xo(i)), Which is
identically distributed to first sequence (S1,S2,...,5n). 0O

Lemma 2.4. Consider a random walk S : Q — RN with an i.i.d. step-size sequence X : QO — RN having positive
mean and natural filtration Fo. We define a discrete process T : Q0 — ZN, where Ty = 0 and for each k € Z..

Tip1 Sinf{n>T;:5,<S1,} =T +inf{n € N:Sp 4, <Sr,}. (1)

P{Ty = oo} < 1, and for the associated counting process N : QO — ZN, we have ENg < 0.

Proof. The random time Tj is adapted to the natural filtration of step-size sequence X, for each k € IN.
We observe that Ty corresponds to the instant when the random walk S hits kth low. From the strong
Markov property for i.i.d. sequences, it follows that the distribution of (X7, 41,..., X1, 1) is identical to
that of (Xy,...,X,) for any finite n € N, and independent of F1,. Therefore, St 1, — St, has iden-
tical distribution to S,, and is independent of J7,. Since we can write the difference Ty 1 — Ty =
inf{n EN:YL X1, 4 < O} , it follows that Ty q is a random time, and Tj,1 — T} is independent of
F7, and distributed identically to T;. Therefore, the sequence (T — Tj_1 :k € N) isiid. and T: Q) —
ZY is a renewal sequence. Associated with renewal sequence T, we can define the counting process

N:Q—ZNasN, = Yien 1i7,<ny for n € N. It follows that ENeo = } e P{ Tk < oo}. We observe that

{Tx < oo} =N {Tj = Tj_1 <o},



From the L' strong law of large numbers, we have lim, 2 = EX; > 0. Thus, P(lim sup, {Sn <0}) =

n
0 and for Markov process S, the set of states R_ is transient. That is, P{T} < co} < 1. Since T is a

_ P{Th<oo}

renewal sequence, we get ENe = Y yen P{T1 < oo}k = (T =) and the result follows. O

Proposition 2.5. Consider a random walk S : Q — RN with an i.i.d. step-size sequence X : QO — RN having
positive mean. Let Fo be the natural filtration associated with X. The first hitting time of the random walk S to

set of positive real numbers, T = inf{n € N : S, > 0}, has finite mean. That is, ET < co.

Proof. From the definition of random time T and duality principle, we can write
P{t>n}=P(Ni_1{Sk <0}) =P(Ni_1 {Sn <Sy—k}) = P{Sy <min{0,5y,...,5,-1}}.

Consider the discrete process T : O — ZN defined in (I), and observe that {T > n} = Ugen {Tx = n}.
Therefore, we can write the mean of stopping time 7 as

Et=1+ ) P{t>n}=14+) Y P{Ti=n}=14+E ) L5 =1+ENe.
neN neNkelN keN

The result follows from finiteness of IENe. O

Definition 2.6. Consider a random walk S : O — RN with Sy £ 0. The number of distinct values of
(So,-+,Sy) is called range, denoted by R, = Up_o {Sk}- We define the first hitting time of random walk
S to x € R as the stopping time

Tw2inf{n e N:S, =x}.

Proposition 2.7. For a simple random walk, lim, ¢ ]Efn =P {1 = o0}.

Proof. We can define indicator function for S; being a distinct number from Sy, ..., Sx_1, as I = ]_[5:01 Lys #5,)-
Then, we can write range R, in terms of indicator Iy as R, =1+ Y_}_; Ix. From the duality principle

P(Nf_y {Sk # Sk—i}) = P(NE_, {Si #0}) = P{wy >k}, keN.

Therefore, ER, = Y}, P {7 > k}, and the result follows from Cesaro mean. O

2.1 Simple random walk

Theorem 2.8 (range). For a simple random walk with EX; = 2p — 1, lim,en ER2 =2(p v (1 - p)) — 1.

n

Proof. When p =1 — p, this random walk is recurrent and thus from the Proposition[2.7, we have

. ER, _ o _ _

For p > (1 —p), we have EX; =2p — 1 > 0, and therefore S, — o0 a.s., and hence
P({m <oo}[{X;=-1})=1

We define conditional probability a = P({1y < oo} | {X; = 1}), and write unconditioned probability of
return of random walk to 0 as

P{t <o} =ap+(1—p).
Since 19 = 2 when S, = 0, we have P({1) < oo} | {S; =0}) = 1. From the law of total probability and
definition of conditional probability, we get
a=P({m <o, Xz =1} |[{S1 =1}) + P({10 <00, Xz = =1} [{S1 = 1}) = pP({ < 00} [{S2=2}) + (1 —p).

From the Markov property and homogeneity of random walk process, it follows that

P({m <o} |{S2=2}) = P{T%?SZo,ZS;; 2} P{n <;o{§12j;o}52 =2}

=P({1 < oo} | {1 <})P({1; <0} | {S2 =2}) =42

We conclude a = a?p + 1 — p, and since « < 1 due to transience, we get a = PTP, and hence the result
follows. We can show similarly for the case when p <1 — p. O



	Introduction
	Duality in random walks
	Simple random walk


