Lecture-29: Random Walks

1 Introduction

Definition 1.1. Let $X: \Omega \rightarrow X^{\mathbb{N}}$ be an i.i.d. step-size sequence, where $X \subseteq \mathbb{R}$ and $\mathbb{E}\left|X_{1}\right|<\infty$. We define $S_{0} \triangleq 0$ and the location of a particle after n steps as $S_{n} \triangleq \sum_{i=1}^{n} X_{i}$. Then the sequence $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ is called a random walk process. If the step-size alphabet $X=\{-1,1\}$, then the random walk is called simple.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative random variables indicating inter-renewal times, then S_{n} is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite $n \in \mathbb{N}$, the joint distributions of finite sequence $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ and the reversed sequence $\left(X_{n}, X_{n-1}, \cdots, X_{1}\right)$ are identical, for any i.i.d. step-size sequence $X: \Omega \rightarrow X^{\mathbb{N}}$.

Proof. Since $X: \Omega \rightarrow X^{\mathbb{N}}$ is a sequence of i.i.d. random variables, it is exchangeable. The reversed sequence is $\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$ where $\sigma:[n] \rightarrow[n]$ is permutation with $\sigma(i)=n-i+1$.

Corollary 2.2. For any random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, the distributions of S_{k} and $S_{n}-S_{n-k}$ are identical for any $k \in[n]$.

Proof. Using duality principle, we can write the following equality for any $x \in \mathbb{R}$ and step $k \in[n]$

$$
P\left\{S_{k} \leqslant x\right\}=P\left\{\sum_{i=1}^{k} X_{i} \leqslant x\right\}=P\left\{\sum_{i=1}^{k} X_{n-i+1} \leqslant x\right\}=P\left\{\sum_{i=n-k+1}^{n} X_{i} \leqslant x\right\}=P\left\{S_{n}-S_{n-k} \leqslant x\right\} .
$$

Corollary 2.3. For any random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, the joint distributions of finite sequence $\left(S_{1}, \ldots, S_{n}\right)$ and $\left(S_{n}-S_{n-1}, \ldots, S_{n}\right)$ are identical for any finite $n \in \mathbb{N}$.

Proof. Since X is i.i.d., it is exchangeable. We take an n-permutation σ such that $\sigma(i)=n-i+1$ for $i \in[n]$. Then, we observe that the second sequence is $\left(X_{\sigma(1)}, X_{\sigma(1)}+X_{\sigma(2)}, \ldots, \sum_{i=1}^{n} X_{\sigma(i)}\right)$, which is identically distributed to first sequence $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$.
Lemma 2.4. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with an i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ having positive mean and natural filtration \mathcal{F}_{\bullet}. We define a discrete process $T: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$, where $T_{0} \triangleq 0$ and for each $k \in \mathbb{Z}_{+}$

$$
\begin{equation*}
T_{k+1} \triangleq \inf \left\{n>T_{k}: S_{n} \leqslant S_{T_{k}}\right\}=T_{k}+\inf \left\{n \in \mathbb{N}: S_{T_{k}+n} \leqslant S_{T_{k}}\right\} \tag{1}
\end{equation*}
$$

$P\left\{T_{1}=\infty\right\}<1$, and for the associated counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$, we have $\mathbb{E} N_{\infty}<\infty$.
Proof. The random time T_{k} is adapted to the natural filtration of step-size sequence X, for each $k \in \mathbb{N}$. We observe that T_{k} corresponds to the instant when the random walk S hits k th low. From the strong Markov property for i.i.d. sequences, it follows that the distribution of $\left(X_{T_{k}+1}, \ldots, X_{T_{k}+n}\right)$ is identical to that of $\left(X_{1}, \ldots, X_{n}\right)$ for any finite $n \in \mathbb{N}$, and independent of $\mathcal{F}_{T_{k}}$. Therefore, $S_{T_{k}+n}-S_{T_{k}}$ has identical distribution to S_{n}, and is independent of $\mathcal{F}_{T_{k}}$. Since we can write the difference $T_{k+1}-T_{k}=$ $\inf \left\{n \in \mathbb{N}: \sum_{i=1}^{n} X_{T_{k}+i} \leqslant 0\right\}$, it follows that T_{k+1} is a random time, and $T_{k+1}-T_{k}$ is independent of $\mathcal{F}_{T_{k}}$ and distributed identically to T_{1}. Therefore, the sequence $\left(T_{k}-T_{k-1}: k \in \mathbb{N}\right)$ is i.i.d. and $T: \Omega \rightarrow$ $\mathbb{Z}_{+}^{\mathbb{N}}$ is a renewal sequence. Associated with renewal sequence T, we can define the counting process $N: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$ as $N_{n} \triangleq \sum_{k \in \mathbb{N}} \mathbb{1}_{\left\{T_{k} \leqslant n\right\}}$ for $n \in \mathbb{N}$. It follows that $\mathbb{E} N_{\infty}=\sum_{k \in \mathbb{N}} P\left\{T_{k}<\infty\right\}$. We observe that

$$
\left\{T_{k}<\infty\right\}=\cap_{j=1}^{k}\left\{T_{j}-T_{j-1}<\infty\right\}
$$

From the L^{1} strong law of large numbers, we have $\lim _{n} \frac{S_{n}}{n}=\mathbb{E} X_{1}>0$. Thus, $P\left(\limsup _{n}\left\{S_{n} \leqslant 0\right\}\right)=$ 0 and for Markov process S, the set of states \mathbb{R}_{-}is transient. That is, $P\left\{T_{1}<\infty\right\}<1$. Since T is a renewal sequence, we get $\mathbb{E} N_{\infty}=\sum_{k \in \mathbb{N}} P\left\{T_{1}<\infty\right\}^{k}=\frac{P\left\{T_{1}<\infty\right\}}{P\left\{T_{1}=\infty\right\}}$ and the result follows.

Proposition 2.5. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with an i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ having positive mean. Let $\mathcal{F} \cdot$ be the natural filtration associated with X. The first hitting time of the random walk S to set of positive real numbers, $\tau \triangleq \inf \left\{n \in \mathbb{N}: S_{n}>0\right\}$, has finite mean. That is, $\mathbb{E} \tau<\infty$.
Proof. From the definition of random time τ and duality principle, we can write

$$
P\{\tau>n\}=P\left(\cap_{k=1}^{n}\left\{S_{k} \leqslant 0\right\}\right)=P\left(\cap_{k=1}^{n}\left\{S_{n} \leqslant S_{n-k}\right\}\right)=P\left\{S_{n} \leqslant \min \left\{0, S_{1}, \ldots, S_{n-1}\right\}\right\} .
$$

Consider the discrete process $T: \Omega \rightarrow \mathbb{Z}_{+}^{\mathbb{N}}$ defined in (1), and observe that $\{\tau>n\}=\cup_{k \in \mathbb{N}}\left\{T_{k}=n\right\}$. Therefore, we can write the mean of stopping time τ as

$$
\mathbb{E} \tau=1+\sum_{n \in \mathbb{N}} P\{\tau>n\}=1+\sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} P\left\{T_{k}=n\right\}=1+\mathbb{E} \sum_{k \in \mathbb{N}} \mathbb{1}_{\left\{T_{k}<\infty\right\}}=1+\mathbb{E} N_{\infty}
$$

The result follows from finiteness of $\mathbb{E} N_{\infty}$.
Definition 2.6. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with $S_{0} \triangleq 0$. The number of distinct values of $\left(S_{0}, \cdots, S_{n}\right)$ is called range, denoted by $R_{n} \triangleq \cup_{k=0}^{n}\left\{S_{k}\right\}$. We define the first hitting time of random walk S to $x \in \mathbb{R}$ as the stopping time

$$
\tau_{x} \triangleq \inf \left\{n \in \mathbb{N}: S_{n}=x\right\}
$$

Proposition 2.7. For a simple random walk, $\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}=P\left\{\tau_{0}=\infty\right\}$.
Proof. We can define indicator function for S_{k} being a distinct number from S_{0}, \ldots, S_{k-1}, as $I_{k} \triangleq \prod_{i=0}^{k-1} \mathbb{1}_{\left\{S_{k} \neq S_{i}\right\}}$. Then, we can write range R_{n} in terms of indicator I_{k} as $R_{n}=1+\sum_{k=1}^{n} I_{k}$. From the duality principle

$$
P\left(\cap_{i=1}^{k}\left\{S_{k} \neq S_{k-i}\right\}\right)=P\left(\cap_{i=1}^{k}\left\{S_{i} \neq 0\right\}\right)=P\left\{\tau_{0}>k\right\}, \quad k \in \mathbb{N} .
$$

Therefore, $\mathbb{E} R_{n}=\sum_{k=0}^{n} P\left\{\tau_{0}>k\right\}$, and the result follows from Cesàro mean.

2.1 Simple random walk

Theorem 2.8 (range). For a simple random walk with $\mathbb{E} X_{1}=2 p-1, \lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}=2(p \vee(1-p))-1$.
Proof. When $p=1-p$, this random walk is recurrent and thus from the Proposition 2.7, we have

$$
\lim _{n \in \mathbb{N}} \frac{\mathbb{E} R_{n}}{n}=P\left\{\tau_{0}=\infty\right\}=0=2(p \vee(1-p))-1
$$

For $p>(1-p)$, we have $\mathbb{E} X_{1}=2 p-1>0$, and therefore $S_{n} \rightarrow \infty$ a.s., and hence

$$
P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{X_{1}=-1\right\}\right)=1
$$

We define conditional probability $\alpha \triangleq P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{X_{1}=1\right\}\right)$, and write unconditioned probability of return of random walk to 0 as

$$
P\left\{\tau_{0}<\infty\right\}=\alpha p+(1-p) .
$$

Since $\tau_{0}=2$ when $S_{2}=0$, we have $P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{S_{2}=0\right\}\right)=1$. From the law of total probability and definition of conditional probability, we get
$\alpha=P\left(\left\{\tau_{0}<\infty, X_{2}=1\right\} \mid\left\{S_{1}=1\right\}\right)+P\left(\left\{\tau_{0}<\infty, X_{2}=-1\right\} \mid\left\{S_{1}=1\right\}\right)=p P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{S_{2}=2\right\}\right)+(1-p)$.
From the Markov property and homogeneity of random walk process, it follows that

$$
\begin{array}{r}
P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{S_{2}=2\right\}\right)=\frac{P\left\{\tau_{0}<\infty, S_{2}=2\right\}}{P\left\{S_{2}=2\right\}}=\frac{P\left\{\tau_{0}<\infty, \tau_{1}<\infty, S_{2}=2\right\}}{P\left\{S_{2}=2\right\}} \\
=P\left(\left\{\tau_{0}<\infty\right\} \mid\left\{\tau_{1}<\infty\right\}\right) P\left(\left\{\tau_{1}<\infty\right\} \mid\left\{S_{2}=2\right\}\right)=\alpha^{2}
\end{array}
$$

We conclude $\alpha=\alpha^{2} p+1-p$, and since $\alpha<1$ due to transience, we get $\alpha=\frac{1-p}{p}$, and hence the result follows. We can show similarly for the case when $p<1-p$.

