Lecture-29: Random Walks

1 Introduction

Definition 1.1. Let $X : \Omega \to \mathcal{X}^{\mathbb{N}}$ be an *i.i.d.* step-size sequence, where $\mathcal{X} \subseteq \mathbb{R}$ and $\mathbb{E}|X_1| < \infty$. We define $S_0 \triangleq 0$ and the location of a particle after n steps as $S_n \triangleq \sum_{i=1}^n X_i$. Then the sequence $S : \Omega \to \mathbb{R}^{\mathbb{N}}$ is called a *random walk process*. If the step-size alphabet $\mathcal{X} = \{-1,1\}$, then the random walk is called **simple**.

Remark 1. Random walks are generalizations of renewal processes. If X was a sequence of non-negative random variables indicating inter-renewal times, then S_n is the instant of the nth renewal event.

2 Duality in random walks

Lemma 2.1 (Duality principle). For any finite $n \in \mathbb{N}$, the joint distributions of finite sequence (X_1, X_2, \dots, X_n) and the reversed sequence $(X_n, X_{n-1}, \dots, X_1)$ are identical, for any i.i.d. step-size sequence $X : \Omega \to \mathcal{X}^{\mathbb{N}}$.

Proof. Since $X : \Omega \to \mathfrak{X}^{\mathbb{N}}$ is a sequence of *i.i.d.* random variables, it is exchangeable. The reversed sequence is $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ where $\sigma : [n] \to [n]$ is permutation with $\sigma(i) = n - i + 1$.

Corollary 2.2. For any random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$, the distributions of S_k and $S_n - S_{n-k}$ are identical for any $k \in [n]$.

Proof. Using duality principle, we can write the following equality for any $x \in \mathbb{R}$ and step $k \in [n]$

$$P\{S_k \leqslant x\} = P\left\{\sum_{i=1}^k X_i \leqslant x\right\} = P\left\{\sum_{i=1}^k X_{n-i+1} \leqslant x\right\} = P\left\{\sum_{i=n-k+1}^n X_i \leqslant x\right\} = P\{S_n - S_{n-k} \leqslant x\}.$$

Corollary 2.3. For any random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$, the joint distributions of finite sequence $(S_1, ..., S_n)$ and $(S_n - S_{n-1}, ..., S_n)$ are identical for any finite $n \in \mathbb{N}$.

Proof. Since X is i.i.d., it is exchangeable. We take an n-permutation σ such that $\sigma(i) = n - i + 1$ for $i \in [n]$. Then, we observe that the second sequence is $(X_{\sigma(1)}, X_{\sigma(1)} + X_{\sigma(2)}, \ldots, \sum_{i=1}^{n} X_{\sigma(i)})$, which is identically distributed to first sequence (S_1, S_2, \ldots, S_n) .

Lemma 2.4. Consider a random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ with an i.i.d. step-size sequence $X: \Omega \to \mathbb{R}^{\mathbb{N}}$ having positive mean and natural filtration \mathcal{F}_{\bullet} . We define a discrete process $T: \Omega \to \mathbb{Z}_{+}^{\mathbb{N}}$, where $T_{0} \triangleq 0$ and for each $k \in \mathbb{Z}_{+}$

$$T_{k+1} \triangleq \inf\left\{n > T_k : S_n \leqslant S_{T_k}\right\} = T_k + \inf\left\{n \in \mathbb{N} : S_{T_k+n} \leqslant S_{T_k}\right\}. \tag{1}$$

 $P\left\{T_1=\infty\right\}<1$, and for the associated counting process $N:\Omega\to\mathbb{Z}_+^\mathbb{N}$, we have $\mathbb{E}N_\infty<\infty$.

Proof. The random time T_k is adapted to the natural filtration of step-size sequence X, for each $k \in \mathbb{N}$. We observe that T_k corresponds to the instant when the random walk S hits kth low. From the strong Markov property for i.i.d. sequences, it follows that the distribution of $(X_{T_k+1},\ldots,X_{T_k+n})$ is identical to that of (X_1,\ldots,X_n) for any finite $n \in \mathbb{N}$, and independent of \mathcal{F}_{T_k} . Therefore, $S_{T_k+n}-S_{T_k}$ has identical distribution to S_n , and is independent of \mathcal{F}_{T_k} . Since we can write the difference $T_{k+1}-T_k=\inf\left\{n\in\mathbb{N}:\sum_{i=1}^n X_{T_k+i}\leqslant 0\right\}$, it follows that T_{k+1} is a random time, and $T_{k+1}-T_k$ is independent of \mathcal{F}_{T_k} and distributed identically to T_1 . Therefore, the sequence $(T_k-T_{k-1}:k\in\mathbb{N})$ is i.i.d. and $T:\Omega\to\mathbb{Z}_+^\mathbb{N}$ is a renewal sequence. Associated with renewal sequence T, we can define the counting process $N:\Omega\to\mathbb{Z}_+^\mathbb{N}$ as $N_n\triangleq\sum_{k\in\mathbb{N}}\mathbb{1}_{\{T_k\leqslant n\}}$ for $n\in\mathbb{N}$. It follows that $\mathbb{E}N_\infty=\sum_{k\in\mathbb{N}}P\left\{T_k<\infty\right\}$. We observe that

$$\left\{T_k < \infty\right\} = \bigcap_{j=1}^k \left\{T_j - T_{j-1} < \infty\right\}.$$

From the L^1 strong law of large numbers, we have $\lim_n \frac{S_n}{n} = \mathbb{E} X_1 > 0$. Thus, $P(\limsup_n \{S_n \le 0\}) = 0$ and for Markov process S, the set of states \mathbb{R}_- is transient. That is, $P\{T_1 < \infty\} < 1$. Since T is a renewal sequence, we get $\mathbb{E} N_\infty = \sum_{k \in \mathbb{N}} P\{T_1 < \infty\}^k = \frac{P\{T_1 < \infty\}}{P\{T_1 = \infty\}}$ and the result follows.

Proposition 2.5. Consider a random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ with an i.i.d. step-size sequence $X: \Omega \to \mathbb{R}^{\mathbb{N}}$ having positive mean. Let \mathcal{F}_{\bullet} be the natural filtration associated with X. The first hitting time of the random walk S to set of positive real numbers, $\tau \triangleq \inf\{n \in \mathbb{N}: S_n > 0\}$, has finite mean. That is, $\mathbb{E}\tau < \infty$.

Proof. From the definition of random time τ and duality principle, we can write

$$P\{\tau > n\} = P(\cap_{k=1}^{n} \{S_{k} \leq 0\}) = P(\cap_{k=1}^{n} \{S_{n} \leq S_{n-k}\}) = P\{S_{n} \leq \min\{0, S_{1}, \dots, S_{n-1}\}\}.$$

Consider the discrete process $T: \Omega \to \mathbb{Z}_+^{\mathbb{N}}$ defined in (1), and observe that $\{\tau > n\} = \bigcup_{k \in \mathbb{N}} \{T_k = n\}$. Therefore, we can write the mean of stopping time τ as

$$\mathbb{E}\tau = 1 + \sum_{n \in \mathbb{N}} P\left\{\tau > n\right\} = 1 + \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} P\left\{T_k = n\right\} = 1 + \mathbb{E}\sum_{k \in \mathbb{N}} \mathbb{1}_{\left\{T_k < \infty\right\}} = 1 + \mathbb{E}N_{\infty}.$$

The result follows from finiteness of $\mathbb{E}N_{\infty}$.

Definition 2.6. Consider a random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ with $S_0 \triangleq 0$. The number of distinct values of (S_0, \dots, S_n) is called **range**, denoted by $R_n \triangleq \bigcup_{k=0}^n \{S_k\}$. We define the first hitting time of random walk S to $x \in \mathbb{R}$ as the stopping time

$$\tau_x \triangleq \inf \{ n \in \mathbb{N} : S_n = x \}.$$

Proposition 2.7. For a simple random walk, $\lim_{n\in\mathbb{N}} \frac{\mathbb{E}R_n}{n} = P\{\tau_0 = \infty\}$.

Proof. We can define indicator function for S_k being a distinct number from S_0, \ldots, S_{k-1} , as $I_k \triangleq \prod_{i=0}^{k-1} \mathbb{1}_{\{S_k \neq S_i\}}$. Then, we can write range R_n in terms of indicator I_k as $R_n = 1 + \sum_{k=1}^n I_k$. From the duality principle

$$P(\cap_{i=1}^{k} \{S_k \neq S_{k-i}\}) = P(\cap_{i=1}^{k} \{S_i \neq 0\}) = P\{\tau_0 > k\}, \quad k \in \mathbb{N}.$$

Therefore, $\mathbb{E}R_n = \sum_{k=0}^n P\{\tau_0 > k\}$, and the result follows from Cesàro mean.

2.1 Simple random walk

Theorem 2.8 (range). For a simple random walk with $\mathbb{E}X_1 = 2p - 1$, $\lim_{n \in \mathbb{N}} \frac{\mathbb{E}R_n}{n} = 2(p \vee (1-p)) - 1$.

Proof. When p = 1 - p, this random walk is recurrent and thus from the Proposition 2.7, we have

$$\lim_{n \in \mathbb{N}} \frac{\mathbb{E} R_n}{n} = P\{\tau_0 = \infty\} = 0 = 2(p \vee (1-p)) - 1.$$

For p > (1 - p), we have $\mathbb{E}X_1 = 2p - 1 > 0$, and therefore $S_n \to \infty$ a.s., and hence

$$P(\{\tau_0 < \infty\} | \{X_1 = -1\}) = 1.$$

We define conditional probability $\alpha \triangleq P(\{\tau_0 < \infty\} \mid \{X_1 = 1\})$, and write unconditioned probability of return of random walk to 0 as

$$P\{\tau_0 < \infty\} = \alpha p + (1 - p).$$

Since $\tau_0 = 2$ when $S_2 = 0$, we have $P(\{\tau_0 < \infty\} \mid \{S_2 = 0\}) = 1$. From the law of total probability and definition of conditional probability, we get

$$\alpha = P(\{\tau_0 < \infty, X_2 = 1\} \mid \{S_1 = 1\}) + P(\{\tau_0 < \infty, X_2 = -1\} \mid \{S_1 = 1\}) = pP(\{\tau_0 < \infty\} \mid \{S_2 = 2\}) + (1 - p).$$

From the Markov property and homogeneity of random walk process, it follows that

$$P(\{\tau_0 < \infty\} \mid \{S_2 = 2\}) = \frac{P\{\tau_0 < \infty, S_2 = 2\}}{P\{S_2 = 2\}} = \frac{P\{\tau_0 < \infty, \tau_1 < \infty, S_2 = 2\}}{P\{S_2 = 2\}}$$
$$= P(\{\tau_0 < \infty\} \mid \{\tau_1 < \infty\}) P(\{\tau_1 < \infty\} \mid \{S_2 = 2\}) = \alpha^2.$$

We conclude $\alpha = \alpha^2 p + 1 - p$, and since $\alpha < 1$ due to transience, we get $\alpha = \frac{1-p}{p}$, and hence the result follows. We can show similarly for the case when p < 1 - p.