Lecture-30: GI/GI/1 Queues

1 GI/GI/1 Queueing Model

Definition 1.1 (GI/GI/1 queue). Consider a single server queue with infinite buffer size and FCFS service discipline. We denote the random *i.i.d.* inter-arrival sequence by $X: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ with an arbitrary common distribution $F: \mathbb{R}_+ \to [0,1]$. The random *i.i.d.* service time sequence is denoted by $Y: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ with an arbitrary common distribution $G: \mathbb{R}_+ \to [0,1]$. For this GI/GI/1 queue, we associate a random walk sequence $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ with *i.i.d.* step-size sequence $U: \Omega \to \mathbb{R}^{\mathbb{N}}$ defined as $U_n \triangleq Y_{n-1} - X_n$ for all $n \in \mathbb{N}$. We also define $M: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ as $M_n \triangleq \max\{S_0, \dots, S_n\}$ for all $n \in \mathbb{N}$.

Proposition 1.2 (Lindley's equation). *If we denote the waiting time before service for customer* n *in the queue by* W_n , *then we have*

$$W_n = (W_{n-1} + Y_{n-1} - X_n) \vee 0, \quad n \in \mathbb{N}.$$

We denote $W_0 = Y_0 = 0$, and the customer 1 arrives at time X_1 .

Proposition 1.3. *Let* $W: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ *be the random waiting time sequence for customers in a GI/GI/1 queue with associated random walk* $S: \Omega \to \mathbb{R}^{\mathbb{N}}$. *Then, we have for any* $c \geqslant 0$

$$P\{W_n \geqslant c\} = P\left(\bigcup_{k \in [n]} \{S_k \geqslant c\}\right). \tag{1}$$

Proof. From the Lindley's recursion for waiting times and the definition of the associated random walk, we get $W_n = \max\{0, W_{n-1} + U_n\}$. Iterating the above relation with $W_1 = 0$, and using the definition of random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ yields

$$W_n = \max\{0, U_n + \max\{0, W_{n-2} + U_{n-1}\}\} = \max\{0, U_n, U_n + U_{n-1} + W_{n-2}\} = \max\{0, S_n - S_{n-1}, \dots, S_n\}.$$

Using the duality principle for exchangeable random sequence U, we get $W_n = M_n$ in distribution. \square

Corollary 1.4. If
$$\mathbb{E}U_n \geqslant 0$$
, then we have $P\{W_\infty \geqslant c\} \triangleq \lim_{n \in \mathbb{N}} P\{W_n \geqslant c\} = 1$ for all $c \in \mathbb{R}$.

Proof. It follows from Proposition 1.3 that $P\{W_n \ge c\}$ is non-decreasing in n. Hence, by monotone convergence theorem, the limit exists and is denoted by $P\{W_\infty \ge c\} \triangleq \lim_{n \in \mathbb{N}} P\{W_n \ge c\}$. Therefore, by continuity of probability and Eq. (1), we have

$$P\{W_{\infty} \geqslant c\} = P\{S_n \geqslant c \text{ for some } n\}.$$
 (2)

If $\mathbb{E}U_n = 0$, then the random walk is recurrent, and every state is almost surely reachable. If $\mathbb{E}U_n > 0$, then the random walk S will converge almost surely to positive infinity, from the L^1 strong law of large numbers.

Remark 1. It follows from this corollary, that the stability condition $\mathbb{E}U_n < 0$ or $\mathbb{E}Y_{n-1} < \mathbb{E}X_n$ is necessary for the existence of a stationary distribution.

Proposition 1.5 (Spitzer's Identity). *Let* $M_n \triangleq \max\{0, S_1, S_2, \dots, S_n\}$ *for all* $n \in \mathbb{N}$, *then* $\mathbb{E}M_n = \sum_{k=1}^n \frac{1}{k} \mathbb{E}S_k^+$.

Proof. We can write $M_n = \mathbb{1}_{\{S_n \le 0\}} M_n + \mathbb{1}_{\{S_n \le 0\}} M_n$. If $S_n \le 0$, then $M_n = M_{n-1}$. That is, $\mathbb{1}_{\{S_n \le 0\}} M_n = \mathbb{1}_{\{S_n \le 0\}} M_{n-1}$. If $S_n > 0$, then $M_n = \max\{S_1, ..., S_n\}$. That is,

$$\mathbb{1}_{\{S_n>0\}}M_n = \mathbb{1}_{\{S_n>0\}} \max_{i \in [n]} S_i = \mathbb{1}_{\{S_n>0\}} (U_1 + \max\{0, S_2 - S_1, \dots, S_n - S_1\}).$$

Hence, taking expectation and using exchangeability of the *i.i.d.* sequence *U*, we get

$$\mathbb{E}[M_n \mathbb{1}_{\{S_n > 0\}}] = \mathbb{E}[U_1 \mathbb{1}_{\{S_n > 0\}}] + \mathbb{E}[M_{n-1} \mathbb{1}_{\{S_n > 0\}}].$$

Since U is an i.i.d. sequence and $S_n = \sum_{i=1}^n U_i$, the tuple (U_i, S_n) has an identical joint distribution for all $i \in [n]$. We observe that $M_1 = S_1^+$, and the result follows from

$$\frac{1}{n}\mathbb{E}S_n^+ = \frac{1}{n}\mathbb{E}[S_n\mathbb{1}_{\{S_n>0\}}] = \frac{1}{n}\mathbb{E}\sum_{i=1}^n U_i\mathbb{1}_{\{S_n>0\}} = \mathbb{E}[U_1\mathbb{1}_{\{S_n>0\}}] = \mathbb{E}M_n - \mathbb{E}M_{n-1}.$$

Remark 2. Since $W_n = M_n$ in distribution, we have $\mathbb{E}[W_n] = \mathbb{E}[M_n] = \sum_{k=1}^n \frac{1}{k} \mathbb{E}[S_k^+]$.

2 Martingales for Random Walks

Proposition 2.1. Consider an i.i.d. step-size sequence $X : \Omega \to \mathbb{Z}^{\mathbb{N}}$ such that $|X_n| \leq M \in \mathbb{Z}_+$. A random walk $S : \Omega \to \mathbb{Z}^{\mathbb{N}}$ with the step size sequence X is a recurrent Markov chain iff $\mathbb{E}X_n = 0$.

Proof. If $\mathbb{E}X_n \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E}X_n$.

Conversely, if $\mathbb{E}X_n = 0$, then the random walk S is a martingale adapted to natural filtration \mathcal{F}_{\bullet} of the step-size sequence. Assume that the random walk starts at state $S_0 = x \in \mathbb{Z}_+$. We define sets

$$A \triangleq \{-M, -M+1, \dots, -2, -1\},$$
 $A_y \triangleq \{y+1, \dots, y+M\}, y > x.$

Let $\tau \triangleq \inf \{ n \in \mathbb{N} : S_n \in A \cup A_y \}$ denote the first hitting time by the random walk S to either A or A_y . It follows that τ is a stopping time adapted to \mathfrak{F}_{\bullet} . Further, $\sup_{n \in \mathbb{N}} |S_{\tau \wedge n}| \leq y + M$. From the optional stopping theorem, we have $\mathbb{E}S_{\tau} = \mathbb{E}S_0 = x$. Thus, we have

$$x = \mathbb{E}_x S_{\tau} = \mathbb{E}_x [S_{\tau} \mathbb{1}_{\{S_{\tau} \in A\}} + S_{\tau} \mathbb{1}_{\{S_{\tau} \in A_y\}}] \geqslant -MP_x \{S_{\tau} \in A\} + y(1 - P_x \{S_{\tau} \in A\}).$$

Rearranging the above equation, we get a bound on probability of random walk S hitting A over A_y as

$$P_x \{S_n \in A \text{ for some } n\} \geqslant P_x \{S_\tau \in A\} \geqslant \frac{y-x}{y+M}.$$

Since the choice of $y \in \mathbb{Z}_+$ was arbitrary, taking limit $y \to \infty$, we see that for any $x \in \mathbb{Z}_+$, we have $P_x \{ S_n \in A \text{ for some } n \} = 1$. Similarly taking $B \triangleq \{1, 2, \dots, M\}$, we can show that $P_x \{ S_n \in B \text{ for some } n \} = 1$ for any $x \le 0$. Result follows from combining the above two arguments to see that for any $x \in \mathbb{Z}$

$$P_x \{S_n \in A \cup B \text{ for some } n\} = 1.$$

Proposition 2.2. Consider a random walk $S: \Omega \to \mathbb{R}^{\mathbb{N}}$ with i.i.d. step-size sequence $X: \Omega \to \mathbb{R}^{\mathbb{N}}$ with common mean $\mathbb{E}[X_1] \neq 0$. For a,b>0, we define the hitting time of the walk S exceeding a positive threshold a or going below a negative threshold -b as

$$\tau \triangleq \{n \in \mathbb{N} : S_n \geqslant a \text{ or } S_n \leqslant -b\}.$$

Let P_a denote the probability that the walk hits a value greater than a before it hits a value less than -b. That is, $P_a riangleq P\{S_{\tau} \geqslant a\}$. Then, for $\theta \neq 0$ such that $\mathbb{E}e^{\theta X_1} = 1$, we have $P_a \approx \frac{1-e^{-\theta b}}{e^{\theta a}-e^{-\theta b}}$. The above approximation is an equality when step size is unity and a and b are integer valued.

Proof. For any a, b > 0, we can define stopping times

$$\tau_a = \inf \{ n \in \mathbb{N} : S_n \geqslant a \}, \qquad \qquad \tau_{-b} = \inf \{ n \in \mathbb{N} : S_n \leqslant -b \}.$$

Then, $\tau = \tau_a \wedge \tau_{-b}$, and we are interested in computing the probability $P_a = P\{\tau_a < \tau_{-b}\}$. We define a random sequence $Z: \Omega \to \mathbb{R}_+^{\mathbb{N}}$ such that $Z_n \triangleq e^{\theta S_n}$ for all $n \in \mathbb{N}$, where $\mathbb{E} e^{\theta X_1} = 1$. Hence, it follows that Z is a martingale with unit mean. We observe that $\sup_{n \in \mathbb{N}} |Z_{\tau \wedge n}| \leq e^{\theta a} \vee e^{-\theta b}$. From the optional stopping theorem, we get $\mathbb{E} e^{\theta S_{\tau}} = 1$. Thus, we get

$$1 = \mathbb{E}[e^{\theta S_{\tau}} \mathbb{1}_{\{\tau_a < \tau_{-b}\}}] + \mathbb{E}[e^{\theta S_{\tau}} \mathbb{1}_{\{\tau_a > \tau_{-b}\}}].$$

We can approximate $e^{\theta S_{\tau}} \mathbbm{1}_{\{\tau_a < \tau_{-b}\}}$ by $e^{\theta a} \mathbbm{1}_{\{\tau_a < \tau_{-b}\}}$ and $e^{\theta S_{\tau}} \mathbbm{1}_{\{\tau_a > \tau_{-b}\}}$ by $e^{-\theta b} \mathbbm{1}_{\{\tau_a > \tau_{-b}\}}$, by neglecting the overshoots past the thresholds a and -b. Therefore, we have

$$1 \approx e^{\theta a} P_a + e^{-\theta b} (1 - P_a).$$

Corollary 2.3. Let $\tau \triangleq \tau_a \wedge \tau_{-b}$ and $P_a \triangleq P\{\tau_a < \tau_{-b}\}$, then $\mathbb{E}\tau \approx \frac{aP_a - b(1 - P_a)}{\mathbb{E}X_1}$.