Lecture-30: GI/GI/1 Queues

1 GI/GI/1 Queueing Model

Definition 1.1 (GI/GI/1 queue). Consider a single server queue with infinite buffer size and FCFS
service discipline. We denote the random i.i.d. inter-arrival sequence by X : O — R with an arbitrary
common distribution F : R — [0,1]. The random i.i.d. service time sequence is denoted by Y : Q — R
with an arbitrary common distribution G : Ry — [0,1]. For this GI/GI/1 queue, we associate a random
walk sequence S : Q — RN with i.i.d. step-size sequence U : Q) — RN defined as U, £ Y,,_1 — X, for all
n € IN. We also define M : Q) — ]le as M, & max {Sy,...,Sy} foralln € N.

Proposition 1.2 (Lindley’s equation). If we denote the waiting time before service for customer n in the queue
by W, then we have
Wi=Wy_1+Yy1—Xy) V0, neNN.

We denote Wy = Yy = 0, and the customer 1 arrives at time X;.

Proposition 1.3. Let W : QO — R be the random waiting time sequence for customers in a GI/Gl/1 queue with
associated random walk S : Q — RN. Then, we have for any ¢ >0

P{Wy>c}=P (Uke[n] {Sk > C}) : @

Proof. From the Lindley’s recursion for waiting times and the definition of the associated random walk,
we get W, = max {0,W,_1 + Uy,}. Iterating the above relation with W; = 0, and using the definition of
random walk S : Q — RN yields

Wy, =max{0,U, +max{0,W,_» + U,,—1}} =max {0, U, U, + U,_1 + W,_2} =max{0,S, — S;,_1,...,5:}.
Using the duality principle for exchangeable random sequence U, we get W, = M, in distribution. [

Corollary 1.4. IfIEU, > 0, then we have P {Wx, > ¢} 2 lim,ey P{W,, > c} =1forallc € R.

Proof. It follows from Proposition that P{W, > c} is non-decreasing in n. Hence, by monotone
convergence theorem, the limit exists and is denoted by P{We > ¢} £ lim,en P{Wy, > c}. Therefore,
by continuity of probability and Eq. (I), we have

P{We >c} =P{S, > c for some n}. 2

If EU, = 0, then the random walk is recurrent, and every state is almost surely reachable. If EU,, > 0,
then the random walk S will converge almost surely to positive infinity, from the L! strong law of large
numbers. O

Remark 1. It follows from this corollary, that the stability condition EU, < 0 or EY,,_1 <EX, isnecessary
for the existence of a stationary distribution.

Proposition 1.5 (Spitzer’s Identity). Let M, £ max {0,51,52,...,Su} foralln € N, then EMy, =Y /4 %]ESk+

Proof. We can write M, = ]l{sn>o}Mn + ]l{sngo}Mn- If S, <0, then M, = M,,_1. That s, ]l{s,zgo}Mn =
1¢s, <oy Mu-1- If S, > 0, then M;, = max{Sy,...,Sx}. Thatis,

]l{Sn>O}Mn = ]l{sn>0}1;12?1)](5i = 1{5n>0}(U1 +max{0,52 —51,...,5, — Sl})

Hence, taking expectation and using exchangeability of the i.i.d. sequence U, we get

E[Mnls,~03] = E[U11¢s,>0y) + E[My-11ys,50)-



Since U is an i.i.d. sequence and S, =} ; U, the tuple (U;,S;;) has an identical joint distribution for all
i € [n]. We observe that M; = S{, and the result follows from

1 1
E]Es,j fIE[SnIL{SPO} fIE):UIL{SN} E[U11s,501] = EM, — EM, 1.

Remark 2. Since W, = M, in distribution, we have E[W,| = E[M,| =Y}, %IE[S;’]

2 Martingales for Random Walks

Proposition 2.1. Consider an i.i.d. step-size sequence X : QO — ZN such that | X,| < M € Z.,. A random walk
S : Q — ZN with the step size sequence X is a recurrent Markov chain iff EX,, = 0.

Proof. If EX, # 0, the random walk is clearly transient since, it will diverge to +co depending on the
sign of EX;,.

Conversely, if EX;, = 0, then the random walk S is a martingale adapted to natural filtration F, of
the step-size sequence. Assume that the random walk starts at state Sp = x € Z . We define sets

AE{-M,~-M+1,---,-2,—1}, AyE{y+1,..y+M}, y>nx

Lett=inf{n € N:S, € AUA,} denote the first hitting time by the random walk S to either A or A,.
It follows that T is a stopping time adapted to Js. Further, sup, . [Stan| <y + M. From the optional
stopping theorem, we have ES; = [ESy = x. Thus, we have

x =, ST—IEX[STH{S €A} +ST]1{S cA }] MPX{ST GA}+y(17Px{ST GA})

Rearranging the above equation, we get a bound on probability of random walk S hitting A over Ay as
—x
+ M’

Since the choice of y € Z was arbitrary, taking limit y — oo, we see that for any x € Z, we have
Py {S, € A for some n} = 1. Similarly taking B =S {1,2,---,M}, we can show that P {S,, € B for some n} =
1 for any x < 0. Result follows from combining the above two arguments to see that for any x € Z

Py{S, € AUB forsomen} =1.

P {S, € Aforsomen} > Py {Sr: € A} >

O

Proposition 2.2. Consider a random walk S : QO — RN with i.i.d. step-size sequence X : Q0 — RN with common
mean E[X1] # 0. For a,b > 0, we define the hitting time of the walk S exceeding a positive threshold a or going
below a negative threshold —b as
t2{neN:S,>aorS, <—b}.

Let P, denote the probability that the walk hits a value greater than a before it hits a value less than —b. That is,
P, 2 P{S; >a}. Then, for 6 # 0 such that Ee%*1 =1, we have P, ~ % The above approximation is an
equality when step size is unity and a and b are integer valued.
Proof. For any a,b > 0, we can define stopping times

=inf{n e N:S, >a}, T, =inf{n € N:S, < —b}.

Then, T = 1; A T_, and we are interested in computing the probability P, = P{1; < 7_;}. We define
a random sequence Z : () — ]RH;I such that Z,, £ ¢ for all n € N, where Ee?X1 = 1. Hence, it follows
that Z is a martingale with unit mean. We observe that sup, . [Zzan| < e% v e=%. From the optional
stopping theorem, we get EefSt =1. Thus, we get

1= IE[EGSTI{TLKT,;,}] + E[eesTﬂ{Tu>Lb}]'

We can approximate ¢S 1ir, <7 ,) by 69”1{T5<Lb} and %5t Lir,>7 ) by e’eb]l{rplb}, by neglecting the
overshoots past the thresholds a and —b. Theretore, we have

1~e%P, +e7%(1—-P,).

Corollary 2.3. Let T2 1, AT_pand P, £ P{t, < T_p}, then ET ~ %&‘Pf’).
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