Lecture-30: GI/GI/1 Queues

1 GI/GI/1 Queueing Model

Definition 1.1 (GI/GI/1 queue). Consider a single server queue with infinite buffer size and FCFS service discipline. We denote the random i.i.d. inter-arrival sequence by $X: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ with an arbitrary common distribution $F: \mathbb{R}_{+} \rightarrow[0,1]$. The random i.i.d. service time sequence is denoted by $Y: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ with an arbitrary common distribution $G: \mathbb{R}_{+} \rightarrow[0,1]$. For this $G I / G I / 1$ queue, we associate a random walk sequence $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with i.i.d. step-size sequence $U: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ defined as $U_{n} \triangleq Y_{n-1}-X_{n}$ for all $n \in \mathbb{N}$. We also define $M: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ as $M_{n} \triangleq \max \left\{S_{0}, \ldots, S_{n}\right\}$ for all $n \in \mathbb{N}$.

Proposition 1.2 (Lindley's equation). If we denote the waiting time before service for customer n in the queue by W_{n}, then we have

$$
W_{n}=\left(W_{n-1}+Y_{n-1}-X_{n}\right) \vee 0, \quad n \in \mathbb{N}
$$

We denote $W_{0}=Y_{0}=0$, and the customer 1 arrives at time X_{1}.
Proposition 1.3. Let $W: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ be the random waiting time sequence for customers in a GI/GI/1 queue with associated random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$. Then, we have for any $c \geqslant 0$

$$
\begin{equation*}
P\left\{W_{n} \geqslant c\right\}=P\left(\cup_{k \in[n]}\left\{S_{k} \geqslant c\right\}\right) . \tag{1}
\end{equation*}
$$

Proof. From the Lindley's recursion for waiting times and the definition of the associated random walk, we get $W_{n}=\max \left\{0, W_{n-1}+U_{n}\right\}$. Iterating the above relation with $W_{1}=0$, and using the definition of random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ yields
$W_{n}=\max \left\{0, U_{n}+\max \left\{0, W_{n-2}+U_{n-1}\right\}\right\}=\max \left\{0, U_{n}, U_{n}+U_{n-1}+W_{n-2}\right\}=\max \left\{0, S_{n}-S_{n-1}, \ldots, S_{n}\right\}$.
Using the duality principle for exchangeable random sequence U, we get $W_{n}=M_{n}$ in distribution.
Corollary 1.4. If $\mathbb{E} U_{n} \geqslant 0$, then we have $P\left\{W_{\infty} \geqslant c\right\} \triangleq \lim _{n \in \mathbb{N}} P\left\{W_{n} \geqslant c\right\}=1$ for all $c \in \mathbb{R}$.
Proof. It follows from Proposition 1.3 that $P\left\{W_{n} \geqslant c\right\}$ is non-decreasing in n. Hence, by monotone convergence theorem, the limit exists and is denoted by $P\left\{W_{\infty} \geqslant c\right\} \triangleq \lim _{n \in \mathbb{N}} P\left\{W_{n} \geqslant c\right\}$. Therefore, by continuity of probability and Eq. (1), we have

$$
\begin{equation*}
P\left\{W_{\infty} \geqslant c\right\}=P\left\{S_{n} \geqslant c \text { for some } n\right\} . \tag{2}
\end{equation*}
$$

If $\mathbb{E} U_{n}=0$, then the random walk is recurrent, and every state is almost surely reachable. If $\mathbb{E} U_{n}>0$, then the random walk S will converge almost surely to positive infinity, from the L^{1} strong law of large numbers.

Remark 1. It follows from this corollary, that the stability condition $\mathbb{E} U_{n}<0$ or $\mathbb{E} Y_{n-1}<\mathbb{E} X_{n}$ is necessary for the existence of a stationary distribution.

Proposition 1.5 (Spitzer's Identity). Let $M_{n} \triangleq \max \left\{0, S_{1}, S_{2}, \ldots, S_{n}\right\}$ for all $n \in \mathbb{N}$, then $\mathbb{E} M_{n}=\sum_{k=1}^{n} \frac{1}{k} \mathbb{E} S_{k}^{+}$.
Proof. We can write $M_{n}=\mathbb{1}_{\left\{S_{n}>0\right\}} M_{n}+\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n}$. If $S_{n} \leqslant 0$, then $M_{n}=M_{n-1}$. That is, $\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n}=$ $\mathbb{1}_{\left\{S_{n} \leqslant 0\right\}} M_{n-1}$. If $S_{n}>0$, then $M_{n}=\max \left\{S_{1}, \ldots, S_{n}\right\}$. That is,

$$
\mathbb{1}_{\left\{S_{n}>0\right\}} M_{n}=\mathbb{1}_{\left\{S_{n}>0\right\}} \max _{i \in[n]} S_{i}=\mathbb{1}_{\left\{S_{n}>0\right\}}\left(U_{1}+\max \left\{0, S_{2}-S_{1}, \ldots, S_{n}-S_{1}\right\}\right) .
$$

Hence, taking expectation and using exchangeability of the i.i.d. sequence U, we get

$$
\mathbb{E}\left[M_{n} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\mathbb{E}\left[U_{1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]+\mathbb{E}\left[M_{n-1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right] .
$$

Since U is an i.i.d. sequence and $S_{n}=\sum_{i=1}^{n} U_{i}$, the tuple $\left(U_{i}, S_{n}\right)$ has an identical joint distribution for all $i \in[n]$. We observe that $M_{1}=S_{1}^{+}$, and the result follows from

$$
\frac{1}{n} \mathbb{E} S_{n}^{+}=\frac{1}{n} \mathbb{E}\left[S_{n} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\frac{1}{n} \mathbb{E} \sum_{i=1}^{n} U_{i} \mathbb{1}_{\left\{S_{n}>0\right\}}=\mathbb{E}\left[U_{1} \mathbb{1}_{\left\{S_{n}>0\right\}}\right]=\mathbb{E} M_{n}-\mathbb{E} M_{n-1}
$$

Remark 2. Since $W_{n}=M_{n}$ in distribution, we have $\mathbb{E}\left[W_{n}\right]=\mathbb{E}\left[M_{n}\right]=\sum_{k=1}^{n} \frac{1}{k} \mathbb{E}\left[S_{k}^{+}\right]$.

2 Martingales for Random Walks

Proposition 2.1. Consider an i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ such that $\left|X_{n}\right| \leqslant M \in \mathbb{Z}_{+}$. A random walk $S: \Omega \rightarrow \mathbb{Z}^{\mathbb{N}}$ with the step size sequence X is a recurrent Markov chain iff $\mathbb{E} X_{n}=0$.

Proof. If $\mathbb{E} X_{n} \neq 0$, the random walk is clearly transient since, it will diverge to $\pm \infty$ depending on the sign of $\mathbb{E} X_{n}$.

Conversely, if $\mathbb{E} X_{n}=0$, then the random walk S is a martingale adapted to natural filtration \mathcal{F}_{\bullet} of the step-size sequence. Assume that the random walk starts at state $S_{0}=x \in \mathbb{Z}_{+}$. We define sets

$$
A \triangleq\{-M,-M+1, \cdots,-2,-1\}, \quad A_{y} \triangleq\{y+1, \ldots, y+M\}, \quad y>x .
$$

Let $\tau \triangleq \inf \left\{n \in \mathbb{N}: S_{n} \in A \cup A_{y}\right\}$ denote the first hitting time by the random walk S to either A or A_{y}. It follows that τ is a stopping time adapted to \mathcal{F}_{\bullet}. Further, $\sup _{n \in \mathbb{N}}\left|S_{\tau \wedge n}\right| \leqslant y+M$. From the optional stopping theorem, we have $\mathbb{E} S_{\tau}=\mathbb{E} S_{0}=x$. Thus, we have

$$
x=\mathbb{E}_{x} S_{\tau}=\mathbb{E}_{x}\left[S_{\tau} \mathbb{1}_{\left\{S_{\tau} \in A\right\}}+S_{\tau} \mathbb{1}_{\left\{S_{\tau} \in A_{y}\right\}}\right] \geqslant-M P_{x}\left\{S_{\tau} \in A\right\}+y\left(1-P_{x}\left\{S_{\tau} \in A\right\}\right) .
$$

Rearranging the above equation, we get a bound on probability of random walk S hitting A over A_{y} as

$$
P_{x}\left\{S_{n} \in A \text { for some } n\right\} \geqslant P_{x}\left\{S_{\tau} \in A\right\} \geqslant \frac{y-x}{y+M} .
$$

Since the choice of $y \in \mathbb{Z}_{+}$was arbitrary, taking limit $y \rightarrow \infty$, we see that for any $x \in \mathbb{Z}_{+}$, we have $P_{x}\left\{S_{n} \in A\right.$ for some $\left.n\right\}=1$. Similarly taking $B \triangleq\{1,2, \cdots, M\}$, we can show that $P_{x}\left\{S_{n} \in B\right.$ for some $\left.n\right\}=$ 1 for any $x \leqslant 0$. Result follows from combining the above two arguments to see that for any $x \in \mathbb{Z}$

$$
P_{x}\left\{S_{n} \in A \cup B \text { for some } n\right\}=1 .
$$

Proposition 2.2. Consider a random walk $S: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with i.i.d. step-size sequence $X: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$ with common mean $\mathbb{E}\left[X_{1}\right] \neq 0$. For $a, b>0$, we define the hitting time of the walk S exceeding a positive threshold a or going below a negative threshold -b as

$$
\tau \triangleq\left\{n \in \mathbb{N}: S_{n} \geqslant a \text { or } S_{n} \leqslant-b\right\} .
$$

Let P_{a} denote the probability that the walk hits a value greater than a before it hits a value less than $-b$. That is, $P_{a} \triangleq P\left\{S_{\tau} \geqslant a\right\}$. Then, for $\theta \neq 0$ such that $\mathbb{E} e^{\theta X_{1}}=1$, we have $P_{a} \approx \frac{1-e^{-\theta b}}{e^{\theta a}-e^{-\theta b}}$. The above approximation is an equality when step size is unity and a and b are integer valued.
Proof. For any $a, b>0$, we can define stopping times

$$
\tau_{a}=\inf \left\{n \in \mathbb{N}: S_{n} \geqslant a\right\}, \quad \tau_{-b}=\inf \left\{n \in \mathbb{N}: S_{n} \leqslant-b\right\}
$$

Then, $\tau=\tau_{a} \wedge \tau_{-b}$, and we are interested in computing the probability $P_{a}=P\left\{\tau_{a}<\tau_{-b}\right\}$. We define a random sequence $Z: \Omega \rightarrow \mathbb{R}_{+}^{\mathbb{N}}$ such that $Z_{n} \triangleq e^{\theta S_{n}}$ for all $n \in \mathbb{N}$, where $\mathbb{E} e^{\theta X_{1}}=1$. Hence, it follows that Z is a martingale with unit mean. We observe that $\sup _{n \in \mathbb{N}}\left|Z_{\tau \wedge n}\right| \leqslant e^{\theta a} \vee e^{-\theta b}$. From the optional stopping theorem, we get $\mathbb{E} e^{\theta S_{\tau}}=1$. Thus, we get

$$
1=\mathbb{E}\left[e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}\right]+\mathbb{E}\left[e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}\right] .
$$

We can approximate $e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}$ by $e^{\theta a} \mathbb{1}_{\left\{\tau_{a}<\tau_{-b}\right\}}$ and $e^{\theta S_{\tau}} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}$ by $e^{-\theta b_{1}} \mathbb{1}_{\left\{\tau_{a}>\tau_{-b}\right\}}$, by neglecting the overshoots past the thresholds a and $-b$. Therefore, we have

$$
1 \approx e^{\theta a} P_{a}+e^{-\theta b}\left(1-P_{a}\right)
$$

Corollary 2.3. Let $\tau \triangleq \tau_{a} \wedge \tau_{-b}$ and $P_{a} \triangleq P\left\{\tau_{a}<\tau_{-b}\right\}$, then $\mathbb{E} \tau \approx \frac{a P_{a}-b\left(1-P_{a}\right)}{\mathbb{E} X_{1}}$.

