
Lecture-22: Resource allocation in networks

1 Resource allocation as utility maximization

The Internet is a shared resource, shared by many millions of users, who are connected by a huge network
consisting of many, many routers and links. The capacity of the links must be split in some fair manner
among the users. Economists solve such problems by associating a so-called utility function with each in-
dividual, and then finding an allocation that maximizes the net utility of the individuals. We now formally
describe and model the resource allocation problem in the Internet.

Definition 1.1 (Links and sources). Consider a network consisting of a set of links L with capacity vector
c ∈ RL

+ such that cℓ ∈ R+ is the capacity of link ℓ ∈ L. These links are accessed by a set of sources S with
rate vector x ∈ RS

+ such that xr ∈ R+ is the rate of source r ∈ S. We will use the terms source and user
interchangeably.

Definition 1.2 (Routes). Each source is associated with a route, where a route is simply a collection of links.
We denote the routing matrix by R ∈ {0,1}L×S such that Rℓ,r is the indicator that route r ∈ S includes link
ℓ ∈ L. That is,

Rℓ,r ≜

{
1, if route r uses link ℓ,
0, otherwise.

Remark 1. Thus, we assume that the route used by a source to convey packets to their destination is fixed.
Since the route is fixed for a source, we use the same index (typically r or s) to denote both a source and its
route. We allow multiple sources to share exactly the same route. Thus, two routes can consist of exactly
the same set of links.

Definition 1.3 (Utility). Each user derives a certain utility Ur(xr) when transmitting at rate xr, where Ur :
R+ → R is an increasing, strictly concave, and continuously differentiable function.

Remark 2. The utility can be interpreted as the level of satisfaction that a user derives when its transmission
rate is xr. It is also usually the case that the rate at which the utility increases is larger at smaller rates than
at larger rates. For example, a user’s level of satisfaction will increase by a larger amount when the rate
allocated to him or her increases from 0 Mbps to 1 Mbps than when the rate increases from 1 Mbps to 2
Mbps. This justifies the assumption that Ur(xr) is a strictly concave function.

Definition 1.4 (Capacity constraint). The total traffic on link ℓ ∈ L from all sources r ∈ S is denoted by
yℓ ≜ ∑r∈S Rℓ,rxr = (Rx)ℓ. Since capacity of link ℓ ∈ L is cℓ, the link capacity constraint is Rx ⩽ c.

Definition 1.5 (Feasible allocation). Given a routing matrix R, we call a source rate allocation x ∈ RS
+

feasible if it is non-negative for all users and satisfies the link capacity constraints at each link ℓ ∈ L. The set
of feasible allocations is denoted by

D ≜
{

x ∈ RS
+ : Rx ⩽ c

}
. (1)

Lemma 1.6. The set of feasible allocations D is a convex set.

Proof. Let x,y ∈ D and λ ∈ [0,1], then we observe that Rx ⩽ c and Ry ⩽ c. Further, from the linearity of
matrix multiplication, we get R(λx + λ̄y) = λRx + λ̄y ⩽ c. Hence, λx + λ̄y ∈ D, and the result holds since
the choice of x,y,λ were arbitrary.
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1.1 Network utility maximization

Definition 1.7 (Network utility maximization). The goal of resource allocation is to solve the following
optimization problem, called network utility maximization (NUM) that finds the feasible non-negative source
rate allocation that satisfies the link capacity constraint and maximizes the sum utility of all users. That is,

x∗ ≜ argmax

{
∑
r∈S

Ur(xr) : x ∈ D
}

. (2)

Remark 3. Recall that Ur is a strictly concave function and hence the sum network utility ∑r∈S Ur is also
strictly concave. Further, we showed that D is convex set and hence NUM is a convex optimization problem
with a unique optimal allocation x∗ ∈ D.

Example 1.8 (Line network). Consider a network with L links numbered 1 through L each with unit
capacity, and L + 1 sources numbered 0 through L. All link capacities are assume to be equal to 1.
Source 0’s route includes all links, while source r uses only link r. The routing matrix for this example
is Rrℓ = 1{r=ℓ}1{r∈[L]} + 1{r=0}. The capacity constraint for each link ℓ ∈ L is

L

∑
r=0

Rℓ,rxr = x0 + xℓ ⩽ 1.

We take the logarithmic utility function, such that Ur(xr)≜ ln xr, then we can write the NUM as

max
x

L

∑
r=0

ln xr,

such that x0 + xℓ ⩽ 1, ℓ ∈ {0, . . . , L} ,
and x ⩾ 0.

Since limx↓0 ln x = −∞, the optimal solution will assign a strictly positive rate to each user, and so the
last constraint can be ignored. Let pℓ be the Lagrange multiplier associated with the capacity constraint
at link ℓ and let p ∈ RL

+ denote the vector of Lagrange multipliers. Then, the Lagrangian is given by

L(x, p) =
L

∑
r=0

ln xr −
L

∑
ℓ=1

pℓ(x0 + xℓ − 1).

Setting ∂L
∂xr

= 0 for each r ∈ S gives x∗0 = 1
∑L
ℓ=1 p∗ℓ

and x∗r = 1
p∗r

for each source r ∈ [L]. Further, the KKT

conditions require that p∗ℓ (x∗0 + x∗ℓ − 1) = 0 and p∗ℓ ⩾ 0 for all links ℓ ∈ [L]. If pℓ = 0 for some link
ℓ ∈ [L], then xℓ = ∞ and x0 + xℓ > 1. Hence, we observe that pℓ ̸= 0 for any link ℓ ∈ [L], and therefore
p∗ℓ =

1
x∗ℓ

= 1
1−x∗0

for all ℓ ∈ [L] and x∗0 =
1−x∗0

L . It follows that optimal values of Lagrange multipliers and
source rates are

p∗ℓ =
L + 1

L
for all ℓ ∈ [L], x∗0 =

1
L + 1

, x∗r =
L

L + 1
,r ∈ [L].

We note an important feature of the solution. The optimal rate of each source explicitly depends on
the sum of the Lagrange multipliers on its route. Thus, if a simple algorithm exists to compute the
Lagrange multipliers on each link and feed back the sum of the Lagrange multipliers on its route to
each source, then the source rates can also be computed easily. This feature of the optimal solution will
be exploited later to derive a distributed algorithm to solve the resource allocation problem.
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1.2 Utility function and fairness

In our network utility maximization framework, we have associated a utility function with each user. The
utility function can be interpreted in one of two different ways.

1. There is an inherent utility function associated with each user.
2. A utility function is assigned to each user by the network.

In the latter case, the choice of utility function determines the resource allocation to the users. Thus, the
utility function can be viewed as imposing different notions of fair resource allocation. Of course, there is
no notion of fair allocation that is universally accepted. Here, we will discuss some commonly used notions
of fairness.

1.2.1 Proportional fairness

Definition 1.9 (Proportional fairness). An allocation x∗ ∈ D ⊆ RS
+ is called proportionally fair if it satisfies

the following property. For any other allocation x ∈ D, we have

∑
r∈S

xr − x∗r
x∗r

⩽ 0. (3)

Remark 4. The reason for this terminology is as follows. If one of the source rates is increased by a certain
amount, the sum of the fractions (also called proportions) by which the different users’ rates change is non-
positive. A consequence of this observation is that, if the proportion by which one user’s rate changes is
positive, there will be at least one other user whose proportional change will be negative.

Lemma 1.10. If f : D → R is a concave continuously differentiable function with maximizer x∗, then for all x ∈ D
⟨∇ f (x∗), (x − x∗)⟩⩽ 0.

Proof. Let x, x∗ ∈ D. Since f is concave, it follows that for any h ∈ [0,1], we have f (x∗ + h(x − x∗)) ⩾
(1 − h) f (x∗) + h f (x). We can rewrite this as

f (x∗ + h(x − x∗))− f (x∗)
h

⩽ f (x)− f (x∗).

Taking limit h → 0 for the continuously differentiable function f and using the fact that x∗ is a maximizer
for f , we get ⟨∇ f (x∗), (x − x∗)⟩⩽ f (x)− f (x∗)⩽ 0.

Lemma 1.11. Proportionally fair resource allocation is achieved by associating a logarithmic utility function with
each user, i.e., U(xr) = ln xr for all users r ∈ S.

Proof. Let x∗ be the maximizer of ∑r∈S Ur(xr) in the constraint set D. From Lemma 1.10, we observe that
the set of optimal rates x∗ ∈ D for logarithmic utility function Ur(xr) = ln xr satisfies (3) for any feasible
allocation x ∈ D.

Definition 1.12. For each user r ∈ S, if the utility functions are of the form wr ln xr for some weight wr > 0,
then the resulting allocation is called weighted proportionally fair.

1.2.2 Max-min fairness

Definition 1.13 (Max-min fairness). An allocation x∗ ∈ D is called max-min fair if it satisfies the following
property. If there is any other allocation x ∈ D such that a user s’s rate increases, i.e., xs > x∗s , then there has
to be another user u with the property xu < x∗u and x∗u ⩽ x∗s .

Remark 5. In other words, if we attempt to increase the rate for one user, the rate for a less-fortunate user
will suffer.

Lemma 1.14. Let x, x∗ ∈ D be arbitrary and optimal max-min fair allocations. Then minr x∗r ⩾ minr xr.

Proof. To see why this is true, suppose that there exists an allocation x ∈ D such that minr x∗r < minr xr.
This implies that, for any s such that minr x∗r = x∗s , we have x∗s < minr xr ⩽ xs. However, this implies
that if we switch the allocation from x∗ to x, we have increased the allocation for s without affecting a
less-fortunate user, since there is no less-fortunate user than s under x∗. Thus, the max-min fair resource
allocation attempts first to satisfy the needs of the user who gets the least amount of resources from the
network.
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1.2.3 Minimum potential delay fairness

Definition 1.15 (Minimum potential delay fairness). If each user r ∈ S is associated with the utility func-
tion Ur(xr)≜− 1

xr
, then the optimal solution x∗ ∈ D to NUM problem is minimum potential delay fair.

Remark 6. The goal of maximizing the sum of the user utilities is equivalent to minimizing the sum ∑r∈S
1
xr

.
The term 1

xr
can be interpreted as follows. If user r with rate r needs to transfer a file of unit size, then the

delay associated with completing this file transfer is 1
xr

. Hence, the name minimum potential delay fairness.

1.2.4 α fairness

Definition 1.16 (α-fair). Let α > 0. Resource allocation is called α-fair if the utility function of each user r ∈ S

is

Ur(xr)≜
x1−α

r
1 − α

. (4)

Lemma 1.17. α-fair utility function are concave, and consequently so is the α-fair network utility.

Proof. We observe that α-fair utility functions are concave for α > 0, since U′′
r (xr) =−αx−1−α

r < 0. Therefore,
the sum of concave functions ∑r∈S Ur(xr) is also concave.

Remark 7. All of the different notions of fairness discussed above can be unified by considering α-fair utility
functions for some α > 0. Different values of α yield different ideas of fairness.

Theorem 1.18. Consider α-fair network utility maximization problem. It reduces to
(a) minimum potential delay fairness for α = 2,
(b) proportional fairness for α = 1, and
(c) max-min fairness for α = ∞.

Proof. Let D ⊆ RS
+ be the set of feasible allocations.

(a) For α = 2, we have Ur(xr) = − 1
xr

and the result follows.
(b) We observe that the optimal allocation remains unchanged for a constant shift in all utility functions. In

particular, we take Ur(xr) ≜
x1−α

r −1
1−α . For α = 1, we have Ur(xr) = limα→1

x1−α
r −1
1−α = ln xr, and the result

follows.
(c) Let x∗(α) ∈ D be the optimal α-fair allocation. We assume that limα→∞ x∗r (α) = x∗r exists for all sources

r ∈ S and x∗1 < x∗2 < · · ·< x∗n for n = |S| sources. We define the minimum consecutive difference for allo-
cation x∗ as ϵ≜minr(x∗r+1 − x∗r ). For this ϵ, we can choose α sufficiently large such that |x∗r (α)− x∗r |⩽ ϵ

4 .
This implies that x∗1(α) < x∗2(α) < · · · < x∗n(α).
Applying Lemma 1.10 to the concave aggregate of α-utility functions, we obtain for any arbitrary feasi-
ble allocation x ∈ D and optimal α-fair allocation x∗(α) ∈ D

∑
r∈S

U′
r(x∗r (α))(xr − x∗r (α)) = ∑

r∈S
(x∗r (α))

−α(xr − x∗r (α))⩽ 0.

Considering an arbitrary flow s ∈ S and multiplying both sides by (x∗s (α))α, the above expression can
be rewritten as

s−1

∑
r=1

(xr − x∗r (α))
(x∗s (α))α

(x∗r (α))α
+ (xs − x∗s (α)) +

n

∑
i=s+1

(xi − x∗i (α))
(x∗s (α))α

(x∗i (α))
α
⩽ 0.

Since |x∗r (α)− x∗r |⩽ ϵ
4 , we further have

s−1

∑
r=1

(xr − x∗r (α))
(x∗s (α))α

(x∗r (α))α
+ (xs − x∗s (α))−

n

∑
i=s+1

|xi − x∗i (α)|
(x∗s +

ϵ
4 )

α

(x∗i −
ϵ
4 )

α
⩽ 0.

Note that x∗i −
ϵ
4 − (x∗s +

ϵ
4 )⩾

ϵ
2 for any i > s. So, by increasing α, the third term in the above expression

will become negligible. Thus, if xs > x∗s (α), the allocation for at least one user whose rate satisfies
x∗r (α) < x∗s (α) will decrease. The argument can be made rigorous and extended to the case x∗r = x∗s for
some r and s. Therefore, as α → ∞, the α-fair allocation approaches max-min fairness.
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