Lecture-23: Stability of dynamic systems

1 Dynamic system

Definition 1.1 (Autonomous dynamic system). For a continuous map $f : \mathbb{R}^n \to \mathbb{R}^n$, we consider an *autonomous dynamic system* $x : \mathbb{R}_+ \to \mathbb{R}^n$ defined by the following differential equation for all $t \in \mathbb{R}_+$,

$$
\dot{x}(t) = \frac{d}{dt}x(t) = f(x(t)).
$$

The time variable *t* is omitted when no confusion is caused. We assume that $x(0)$ is given and *f* satisfies other appropriate conditions to ensure that the differential equation has a unique solution

$$
x(t) = x(0) + \int_0^t f(x(s))ds, \text{ for } t \in \mathbb{R}_+.
$$

Definition 1.2 (Equilibrium point). A point $x_e \in \mathbb{R}^n$ is called an *equilibrium point* of autonomous dynamic system $x : \mathbb{R}_+ \to \mathbb{R}^n$ defined in Definition [1.1](#page-0-0) if $f(x_e) = 0$. The set of equilibrium points is denoted by $A_e \triangleq \{x \in \mathbb{R}^n : f(x) = 0\}$. We assume that $x_e = 0$ is the unique equilibrium point of this dynamic system.

Lemma 1.3. Consider an autonomous dynamic system $x : \mathbb{R}_+ \to \mathbb{R}^n$ defined in Definition [1.1.](#page-0-0) If $x(t) = x_e$ for some $t \in \mathbb{R}_+$, then $x(s) = x_e$ for all $s > t$.

Proof. Let $x(t) = x_e$ for some $t \in \mathbb{R}_+$ and we define $u \triangleq \inf\{s > t : x(s) \neq x_e\}$, then *u* is a point of discontinuity whereas *x* is continuous everywhere in *t*. This implies that $u = \infty$, and we are done. \Box

Corollary 1.4. Consider the autonomous dynamic system $x : \mathbb{R}_+ \to \mathbb{R}^n$ defined in Definition [1.1.](#page-0-0) If $x(t)$ does not *converge to the equilibrium point* x_e *for large t, then* $x(t) \neq x_e$ *for any* $t \in \mathbb{R}_+$ *.*

Proof. If $x(t) = x_e$ for some $t \in \mathbb{R}_+$, then from Lemma [1.3](#page-0-1) we have $x(s) = x_e$ for all $s \ge t$. This implies that $\lim_{t\to\infty} x(t) = x_e$ and contradicts the assumption that $x(t)$ does not converge to x_e . \Box

Definition 1.5 (Potential function). A map $V : \mathbb{R}^n \to \mathbb{R}$ is called a *potential function*, if it is differentiable and satisfies the radial unboundedness property $\lim_{\|x\| \to \infty} V(x) = \infty$.

Lemma 1.6. Let $c \in \mathbb{R}$ and $V : \mathbb{R}^n \to \mathbb{R}$ a potential function, then the set $A_c \triangleq \{x \in \mathbb{R}^n : V(x) \leq c\}$ is bounded.

Proof. If set A_c is unbounded, then we can find a sequence $y \in A_c^N$ such that $\lim_{m\to\infty} ||y||_m = \infty$. It follows that *V*(y_m) ≤ *c* for all $m \in \mathbb{N}$, and hence $\lim_{m\to\infty} V(y_m)$ ≤ *c*. However this contradicts the radial unboundedness property of potential function *V*.

Lemma 1.7. For any potential function $V : \mathbb{R}^n \to \mathbb{R}$ and an autonomous dynamic system $x : \mathbb{R}_+ \to \mathbb{R}^n$ defined in *Definition [1.1,](#page-0-0) the time derivative of potential function is denoted by* $\dot{V}(x) \triangleq \frac{d}{dt}V(x(t))$ *, and given by*

$$
\dot{V}(x) = \langle \nabla V(x), \dot{x} \rangle = \langle \nabla V(x), f(x) \rangle.
$$

Proof. It follows from substituting the definition of autonomous dynamic system in the time derivative of potential function. \Box

Theorem 1.8 (Lyapunov boundedness). *Consider an autonomous dynamic system x defined in Definition [1.1](#page-0-0) and an associated potential function* $V : \mathbb{R}^n \to \mathbb{R}$ *defined in Definition* [1.5.](#page-0-2) If $\dot{V}(x) \leq 0$ for all x, then there exists a *constant* $B > 0$ *such that* $||x(t)|| \le B$ *for all times t.*

Proof. From Lemma [\(1.6\)](#page-0-3), we get that $A_c \triangleq \{x \in \mathbb{R}^n : V(x) \leqslant c\}$ is a bounded set for any finite $c \in \mathbb{R}$. Since $V(x) < 0$ for all *x*, we get that at any time $t \in \mathbb{R}_+$, we have

$$
V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(s))ds \leq V(x(0)).
$$

Taking $c \triangleq V(x(0))$, we get that $x(t) \in A_c$ for all $t \in \mathbb{R}_+$. The result follows by taking $B \triangleq \sup\{||x|| : x \in A_c\}$.

Definition 1.9 (Globally asymptotically stable). An equilibrium point $x_e \in A_e$ is said to be a *globally asymptotically stable* if $\lim_{t\to\infty} x(t) = x_e$ for any $x(0) \in \mathbb{R}^n$.

Theorem 1.10 (Lyapunov global asymptotic stability). *Consider an autonomous dynamic system x defined in Definition* [1.1](#page-0-0) *and an associated potential function* $V : \mathbb{R}^n \to \mathbb{R}$ *defined in Definition* [1.5](#page-0-2) *that satisfies the following properties.*

(a) V is differentiable with continuous first derivatives, (b) $V(x) \ge 0$ *for all* $x \in \mathbb{R}^n$ *with equality iff* $x = x_e$ *, and (c)* $\dot{V}(x) < 0$ *for any* $x \neq x_e$ *and* $\dot{V}(x_e) = 0$ *. Then the equilibrium point x^e is globally asymptotically stable.*

Proof. We prove this theorem by contradiction, and assume that $x(t)$ doesn't converge to x_e for large *t*. Therefore, $x(t) \neq x_e$ for any $t \in \mathbb{R}_+$ from Corollary [1.4.](#page-0-4) Consequently, $\dot{V}(x(t)) < 0$ and $V(x(t)) > 0$ for all times $t \in \mathbb{R}_+$, and hence $V(x(t))$ is decreasing in time *t* and lower bounded by 0. Hence, $\epsilon \triangleq$ lim_{*t*→∞} $V(x(t)) \ge 0$ exists. Since *V* and *x* are continuous, we get that lim_{*t*→∞} $V(x(t)) = V(\lim_{t\to\infty} x(t)) \ne$ $V(x_e) = 0$. Therefore $\epsilon > 0$, and we define the set

$$
\mathcal{C} \triangleq \{x \in \mathbb{R}^n : \epsilon \leq V(x) \leq V(x(0))\} = V^{-1}[\epsilon, V(x(0))] \subseteq V^{-1}(-\infty, V(x(0))].
$$

From Lemma [1.6](#page-0-3) for potential function, the set $V^{-1}(-\infty,V(x(0))]$ is bounded and hence so is $\mathcal C.$ Further, $\mathcal C$ is closed since the map $x \mapsto V(x)$ is continuous and $[\epsilon, V(x(0))]$ is closed. Since C is closed and bounded, it is a compact set and we define

$$
a \triangleq -\sup \{ \dot{V}(x) : x \in \mathcal{C} \} = -\sup \dot{V}^{-1}(\mathcal{C}) \geq 0.
$$

Since C is compact and the map $x \mapsto \dot{V}(x)$ is continuous, it follows that $\dot{V}^{-1}(C)$ is compact and sup $\dot{V}^{-1}(C)$ = max $\dot{V}^{-1}(C)$ is finite and belongs to $\dot{V}^{-1}(C)$. Since $x_e \notin C$ and hence $0 \notin \dot{V}^{-1}(C)$, it follows that $a > 0$. Hence, we can write

$$
V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(s))ds \le V(x(0)) - at.
$$

This implies that $V(x(t)) = 0$ and $x(t) = x_e$ for all $t \ge \frac{1}{a}V(x(0))$. This contradicts the assumption that $x(t)$ does not converge to *x^e* .

Remark 1. The Lyapunov global asymptotic stability theorem requires that $\dot{V}(x) \neq 0$ for any $x \neq x_e$. In the case $\dot{V}(x) = 0$ for some $x \neq x_e$, global asymptotic stability can be studied using Lasalle?s invariance principle.

Theorem 1.11 (Lasalle's invariance principle). *Consider an autonomous dynamic system x defined in Definition* [1.1](#page-0-0) and an associated potential function $V : \mathbb{R}^n \to \mathbb{R}$ defined in Definition [1.5](#page-0-2) that satisfies the following *properties.*

(a) V is differentiable with continuous first derivatives,

(b) $V(x) \ge 0$ *for all* $x \in \mathbb{R}$ *with equality iff* $x = x_e$ *,*

(c) $\dot{V}(x) \leq 0$ *for all x, and*

(d) the only trajectory $x(t)$ that satisfies $\dot{x}(t) = f(x(t))$ and $\dot{V}(x(t)) = 0$ for all $t \in \mathbb{R}_+$, is $x(t) = x_e$ for all $t \in \mathbb{R}_+$. *Then the equilibrium point x^e is globally asymptotically stable.*

Proof.

 \Box