
Lecture-27: TCP Reno

1 Adaptive window flow control and TCP protocols

Congestion control algorithms deployed in the Internet use a concept called window flow control. Each
user maintains a number, called a window size, which is the number of unacknowledged packets that are
allowed to be sent into the network. Any new packet can be sent only when an acknowledgement for one
of the previous sent packets is received by the sender, as shown in Figure 7.1. Suppose that the link speeds
in the network are so large that the amount of time it takes to process a packet at a link is much smaller than
the round-trip time (RTT), which is the amount of time that elapses between the time that a packet is released
by the source and the time when it receives the acknowledgement (ack) for the packet from the destination.
Then, roughly speaking, the source will send W packets into the network, receive acknowledgements for
all of them after one RTT, then send W more packets into the network, and so on. Thus, the source sends W
packets once every RTT, which means that the average transmission rate x of the source can approximated
by the formula x = W

T , where T is the RTT.
A significant problem with the simple window flow control scheme as described above is that the op-

timal choice of W depends on the number of other users in the network: clearly, the transmission rate of a
user should be small if it shares a common link with many other users, but it can be large (but smaller than
the capacity of its route) if there are few other users sharing the links on its route. Thus, what is required
is an algorithm to adjust adaptively the window size in response to congestion information. This task is
performed by the congestion control part of the Transmission Control Protocol (TCP) in today’s Internet.
The general idea is as follows: a sender increases its window size if it determines that there is no conges-
tion, and decreases the window size if it detects congestion. Packet losses or excessive delays in the route
from the source to the destination are used as indicators of congestion. Excessive delays in receiving an ack
indicate large delays, while missing ACKs signal lost packets. With some exceptions, congestion detection is
performed by the source at time instants when it receives an ACK for a packet. This means that the conges-
tion control algorithm makes decision at ACK reception events, and does not explicitly rely on any clocks for
timing information. In other words, TCP is a self-clocking protocol. Different versions of TCP use different
algorithms to detect congestion and to increase/decrease the window sizes. We discuss two versions of
TCP in the following sections.

1.1 TCP-Reno: a loss-based algorithm

The most commonly used TCP flavors used for congestion control in the Internet today are Reno and
NewReno. Both of them are updates of the TCP-Tahoe, which was introduced in 1988. Although they
vary significantly in many regards, the basic approach to congestion control is similar. The idea is to use
successful reception packets as an indication of available capacity and dropped packets as an indication of
congestion.

We consider a simplified model for the purpose of exposition. Each time the destination receives a
packet, it sends and acknowledgement (also called ACK) asking for the next packet in sequence. For exam-
ple, when packet 1 is received, the acknowledgement takes the form of a request for packet 2. If, instead of
the expected packet 2, the destination receives packet 3, the acknowledgement still requests packet 2. Re-
ception of three duplicated acknowledgments or dupAcks (i.e., four successive identical ACKs) is taken as an
indication that packet 2 has been lost due to congestion. The source then proceeds to cut down the window
size and also to re-transmit lost packets. In case the source does not receive any acknowledgements for a
finite time, it assumes that all its packets have been lost and times out. When a non-duplicate acknowledg-
ment is received, the protocol increases its window size. The amount by which the window size is increases
depends upon the TCP transmission phase. TCP operates in two distinct phases.

1

Slow start. When file transfer begins, the window size is 1, but the source rapidly increases its transmission
window size so as to reach the available capacity quickly. Let us denote the window size W. The algo-
rithm increases the window size by 1 each time an acknowledgement indicating success is received,
i.e., W ← W + 1. This is called the slow-start phase. Since one would receive acknowledgements
corresponding to one window’s worth of packets in an RTT, and we increase the window size by
one for each successful packet transmission, this also means that (if all transmissions are successful)
the window would double in each RTT, so we have an exponential increase in rate as time proceeds.
Slow-start refers to the fact that the window size is still small in this phase, but the rate at which the
window is increases is quite rapid.

Congestion avoidance. When the window size either hits a threshold, called the slow-start threshold or
ssthresh or the transmission suffers a loss (immediately leading to a halving of window size), the
algorithm shifts to a more conservative approach called the congestion avoidance phase. When in the
congestion-avoidance phase, the algorithm increases the window size by 1

W every time feedback of a
successful packet transmission is received, so we now have W←W + 1

W .

Loss event. When a packet loss is detected by the receipt of three dupAck, the slow-start threshold ssthresh

is set to W and TCP Reno cuts its window size by half, i.e., W← W
2 .

Thus, in each RTT, the window increases by one packet—a linear increase in rate. Protocols of this sort
where increment is by a constant amount, but the decrement is by a multiplicative factor are called additive-
increase multiplicative-decrease (AIMD) protocols. When packet loss is detected by a time-out, the window
size is reset to 1 and TCP enters the slow-start phase. We illustrate the operation of TCP-Reno in terms
of rate of transmission in Figure 4.2. The slow-start phase of a flow is relatively insignificant if the flow
consists of a large number of packets. So we will consider only the congestion-avoidance phase.

1.2 TCP-Reno: time evolution of congestion window

Let us call the congestion window at time t as W(t), which is the number of packets in-flight. The time
taken by each of these packets to reach the destination, and for the corresponding acknowledgement to be
received is T. The RTT is a combination of propagation delay and queueing delay. In our modeling, we
assume that the RTT is constant, equal to the propagation delay plus the maximum queueing delay. If one
observes the medium between the source and destination for an interval [t, t+ T], and there are no dropped
packets, then the number of packets seen is W(t) since the window size changes rather slowly in one RTT.
Thus, the average rate of transmission x(t) is just the window size divided by T, i.e., x(t) = W(t)

T . We
assume that packet n− 1 sent at time Tn−1 is successfully received, and an ACK is received at time Tn−1 + T.
Packet n is sent at time Tn and if it is successfully received then we receive an ACK for it at time Tn + T, and
ξn is the indicator that packet n is successfully received. If a duplicate ACK for packet n− 1 is received at
time Tn+1 + T, then it indicates packet n was dropped. Further, we observe that W(Tn) is the number of
packets to be sent in the duration [Tn, Tn + T), and therefore Tn+1 = Tn +

1
x(Tn)

To be precise, we have

W(Tn+1 + T)−W(Tn + T)
Tn+1 − Tn

= ξn+1x(Tn)
1

W(Tn + T)
− ξ̄nx(Tn)

W(Tn + T)
2

.

We now write down what we have just seen about TCP Reno’s behavior in terms of the differential
equation models that we have become familiar with. Consider a flow r. As defined above, let Wr(t) denote
the window size and Tr its RTT. Earlier we had the concept of the price of a route r being qr(t). We now
use the same notation to denote the probability that a packet will be lost at time t. Notice that the loss of
packets is the price paid by flow r for using the links that constitute the route it uses. Replacing indicator
ξn by its mean qr(Tn), we can model the congestion avoidance phase of TCP-Reno as

Ẇr(t) = xr(t− Tr)(1− qr(t− Tr))
1

Wr(t)
− xr(t− Tr)qr(t− Tr)βWr(t). (1)

The above equation can be derived as follows.

2

Congestion avoidance. The rate at which the source obtains acknowledgements is xr(t − Tr)(1 − qr(t −
Tr)). Since each acknowledgement leads to an increase by 1

W(t) , the rate at which the transmission
rate increases is given by the first term on the right side.

Loss event. The rate at which packets are lost is xr(t − Tr)qr(t − Tr). Such events would cause the rate
of transmission to be decreased by a factor that we call β. This is the second term on the right side.
Considering the fact that there is a halving of window size due to loss of packets, β would naturally
taken to be 1

2 . However, studies show that a more precise value of β when making a continuous-time
approximation of TCP’s behavior is close to 2

3 .

To compare the TCP formulation above to the resource allocation framework, we write Wr(t) in terms of
xr(t) which yields

ẋr =
xr(t− Tr)(1− qr(t− Tr))

T2
r xr

− βxr(t− Tr)qr(t− Tr)xr(t). (2)

The equilibrium value of xr is found by setting ẋr = 0 and denoted by x̂r. Denoting the equilibrium loss
probability as q̂, we observe that

x̂r =
1
Tr

√
1− q̂r

βq̂r
.

For small values of q̂r (which is what one desires in the Internet), x̂r ∝ 1
Tr
√

q̂r
. This result is well-known and

widely used in the performance analysis of TCP Reno.

1.3 Relationship with primal congestion control algorithm

Now, consider the controller (2) again. Suppose that there were no feedback delay, but the equation is
otherwise unchanged. So T2

r that appears in (2) is just some constant now. Also, let qr(t) be small, i.e., the
probability of losing a packet is not too large. Then the controller reduces to

ẋr =
1

T2
r
− βx2

r qr = βx2
r

(1
βT2

r x2
r
− qr

)
.

Comparing with primal congestion controller ẋr = kr(xr)(U′r(xr)− qr), we observe that the the controller (2)
is a primal congestion controller for scaling function kr(xr) = βx2

r and the utility function Ur : R+ → R of
the source r that satisfies

U′r(xr) =
1

βT2
r x2

r
.

We can find the source utility up to an additive constant by integrating the above, which yields Ur(xr) =

− 1
βT2

r xr
. Thus, TCP can be approximately viewed as a control algorithm that attempts to achieve weighted

minimum potential delay fairness.
If we do not assume that qr is small, the delay-free differential equation is given by

ẋr =
1− qr

T2
r
− βx2

r qr = (βx2
r +

1
T2

r
)
(1

βT2
r x2

r + 1
− qr

)
.

This is also a primal congestion controller for scaling function kr(xr) = (βx2
r +

1
T2

r
) and the following deriva-

tive of the utility function and the utility function up to an additive constant,

U′r(xr) =
1

βT2
r x2

r + 1
, Ur(xr) = −

1
Tr
√

β
tan−1 xrTr

√
β.

1.4 A generalization of TCP-Reno

Instead of increasing the window size by 1
W for each ack and decreasing the window by 1

2 upon detecting a
loss, one could consider other increase-decrease choices as well. Consider a protocol where W←W + aWn

when an acknowledgement is received, while a loss triggers a window decrease given by W←W − bWm.

3

Setting a = 1,n = −1,b = 0.5, and m = 1 would yield TCP-Reno type behavior. The equivalent rate-based
equation describing the dynamics of such a protocol would be

ẋr =
xr(t− Tr)(1− qr(t− Tr))

Tr
a(xr(t)Tr)

n − xr(t− Tr)qr(t− Tr)

Tr
b(xr(t)Tr)

m.

Ignoring the feedback delay in obtaining the congestion information, the above differential equation be-
comes

ẋr = axn+1
r Tn−1

r − (axn+1
r Tn−1

r + bxm+1
r Tm−1

r)qr = axn+1
r Tn−1

r (1 +
b
a
(xrTr)

m−n)
(1

1 + b
a (xrTr)m−n

− qr

)
.

Note that 1
1+ b

a (xrTr)m−n is a decreasing function for m > n. Thus, its derivative will be negative and hence

one can view the above differential equation as the primal congestion controller for a source r with scaling
function kr and a concave utility function Ur given by

kr(xr)≜ axn+1
r Tn−1

r (1 +
b
a
(xrTr)

m−n), Ur(xr)≜
∫ xr

0

1
1 + b

a (xTr)m−n
dx.

A special case of the above congestion control algorithm called Scalable-TCP which uses the parameters
a = 0.01,n = 0,b = 0.125,and m = 1 has been proposed for high-bandwidth environments.

4

	Adaptive window flow control and TCP protocols
	TCP-Reno: a loss-based algorithm
	TCP-Reno: time evolution of congestion window
	Relationship with primal congestion control algorithm
	A generalization of TCP-Reno

