
Lecture-28: TCP Vegas

1 TCP-Vegas

We now consider another variation of TCP called TCP-Vegas. TCP-Vegas uses queueing delay to infer
congestion in the network. We denote the observed round trip time RTT by Tr(t) and the estimated prop-
agation delay by Tpr(t) for source r at time t. We assume that the propagation delay of the route is equal
to the smallest RTT seen by the source, i.e. Tpr ≜ infs⩽t Tr(s) This is a reasonable assumption if we assume
that queues empty occasionally in which case the only delay is the propagation delay. Any excess delay
above this amount would be queueing delay and we denote it Tqr(t) ≜ Tr(t)− Tpr(t). The objective of the
algorithm is to calculate the value of window size such that there is minimal queueing delay. When this
occurs, the rate of generation of packets xr is equal to the available capacity minℓ∈Lr cℓ on the route r. We
now study the details of this algorithm.

1.1 A delay based algorithm

Let Wr(t) be the window size of source r at time t. If there was no queueing delay, the throughput for source
r at time t would be approximately given by er(t) ≜

Wr(t)
Tpr

. We call this expected or desired throughput.
However, the actual throughput is the number of packets that make it successfully to the destination in a
fixed amount of time. To calculate this quantity, the source r sends a marked packet and waits for it to be
acknowledged. The duration of time that it takes for this event to occur is the round-trip time RTT denoted
Tr(t) = Tpr(t) + Tqr(t). Suppose during this time, the source receives Sr(t) acknowledgments, then the

actual throughput for source r at time t is estimated as ar(t) ≜
Sr(t)
Tr(t)

. If there is no loss in the system, then
Sr(t) = Wr(t − Tr). Whenever we receive the acknowledgment for a marked packet at some time t, we have
two values
(a) the expected throughput er(t) and
(b) the actual throughput ar(t).
If ar(t) < er(t), it means that our transmission rate is too high, so we should cut down the window size.
On the other hand, if ar(t) > er(t), it means that the estimate of the available rate is too low and we should
increase the window size. Formally, we define constants α and β, with α ⩽ β and proceed as follows.

• If (er(t) − ar(t)) ∈ [α, β], then do nothing. This means that our estimate of the throughput is fairly
accurate, and everything is as it should be.

• If (er(t)− ar(t)) > β, decrease the window size by 1 for the next RTT. This means that our estimate is
too high and the window size must be reduced.

• If (er(t)− ar(t)) < α, increase the window size by 1 for the next RTT. This means that our estimate is
too low and the network can support more than we think.

Note that both the increase and decrease of window size are linear in nature. Also, the algorithm uses
the usual slow start mechanism, with exponential growth initially. The behavior of TCP-Vegas under ideal
conditions would look something like Figure 4.3.

1.2 A resource allocation algorithm

We interpret TCP-Vegas as a resource allocation algorithm in the utility maximization framework. We
assume α = β and the propagation delay is estimated accurately, i.e., for source r, we have Tpr(t) = Tpr

1

for all times t. We denote the equilibrium window size as Ŵr and the equilibrium queueing delay as T̂qr
for source r. At equilibrium, the difference between the estimated and the actual throughput remains
unchanged as êr − âr = α, with the window size Ŵr and the number of acknowledgements Ŝr received in
an RTT being the same as Ŵr = Ŝr. Then

Ŵr

Tpr
− Ŵr

Tpr + T̂qr
= α.

At equilibrium, the transmission rate x̂ is approximately x̂r =
Ŵr

Tpr+T̂qr
, to rewrite the above equation as

α
Tpr
x̂r

= T̂qr. Now that we know what the equilibrium transmission rate looks like, let us study what the
equilibrium queueing delay T̂qr would look like. At link ℓ, the equilibrium queue length is denoted by b̂ℓ
and link capacity by cℓ, then the equilibrium queueing delay is b̂ℓ

cℓ
. So we have T̂qr = ∑ℓ∈L Rℓ,r

b̂ℓ
cℓ

.

At link ℓ, if equilibrium link load ŷℓ ≜ ∑k∈S Rℓ,k x̂k < cℓ, then there is no queueing delay, i.e., b̂ℓ = 0 in
this case. That is, b̂ℓ > 0 only if ŷℓ ⩾ cℓ. We note that the aggregate equilibrium transmission rate of all flows
using link ℓ cannot exceed the link capacity cℓ, we cannot possibly have that ŷℓ > cℓ. Therefore, if b̂ℓ > 0,
then ŷℓ = cℓ. Thus, the equilibrium conditions for all sources r ∈ S and links ℓ ∈ L, are

α
Tpr

x̂r
= ∑

ℓ∈L
Rℓ,r

b̂ℓ
cℓ

, ŷℓ = ∑
k∈S

Rℓ,k x̂k,
b̂ℓ
cℓ
(ŷℓ − cℓ) = 0.

However, these are the Karush-Kuhn-Tucker conditions for the utility maximization problem

x̂ ≜ argmax

{
∑
r∈S

Ur(xr) : x ∈ D
}

, Ur(xr)≜ αTpr ln xr, D ≜
{

x ∈ RS
+ : y ⩽ c

}
,

where p̂ℓ ≜
b̂ℓ
cℓ

is the equilibrium price of link ℓ ∈ L. Thus, TCP-Vegas is weighted-proportionally fair. If we
let each flow have a different value of α, i.e., we associate αr with route r, then the equilibrium rates will
maximize ∑r∈S Ur(xr) where Ur(xr)≜ αrTpr ln xr for each source r ∈ S.

1.3 Relation to dual algorithms and extensions

We now consider the relationship between TCP-Vegas and dual algorithms. A weighted proportionally fair
dual algorithm would use the controller obtained by substituting Ur(xr) ≜ wr ln xr as the utility function,
which yields

xr = (U′
r)

−1(qr) =
wr

qr
, ṗℓ = hℓ(yℓ − cℓ)+pℓ .

To avoid confusion, we note that wr ≜ αrTpr is the weight assigned to source r and is unrelated to the
window size Wr(t). If we choose hℓ = 1

cℓ
, then the price function pℓ of a link ℓ becomes the queueing delay

bℓ
cℓ

experienced by packets using that link ℓ, which when aggregated over all links traversed over the route
r

qr(t)≜ ∑
ℓ∈L

Rℓ,r pℓ(t) = ∑
ℓ∈L

Rℓ,r
bℓ(t)

cℓ
= Tqr(t),

and added to a constant propagation delay Tpr, is the feedback Tr(t) = Tpr + Tqr(t) that is used in the Vegas
algorithm.

Let us study the source rates used in Vegas more closely to create a fluid model equivalent. From the
algorithm description for α = β, it follows that the increase in the congestion window Wr(t) under the Vegas
algorithm is equal to

−sign
(Wr(t)

Tpr
− Wr(t)

Tpr + Tqr(t)
− α

)
,

2

where sign(z) = −11{z<0} + 1{z>0}. Using the approximation xr(t) ≜
Wr(t)

Tpr+Tqr(t)
, we can rewrite the condi-

tions as
−sign

(
xr(t)Tqr(t)− αTpr

)
.

Denoting the queue length and queueing delay at link ℓ at time t as bℓ(t) and pℓ(t)≜
bℓ(t)

cℓ
, we have Tqr(t)≜

∑ℓ∈L Rℓ,r
bℓ(t)

cℓ
= ∑ℓ∈L Rℓ,r pℓ(t). We have used pℓ(t) to denote the queueing delay at link ℓ, which acts as

the price function for TCP Vegas. Combining the above expressions, the condition for increase/decrease of
congestion window becomes

−sign
(

xr(t) ∑
ℓ∈L

Rℓ,r pℓ(t)− αTpr

)
.

The window control algorithm can be written as

Wr(t + Tr(t)) =
[
Wr(t) +

1
Tpr + Tqr(t)

sign(αTpr − xr(t)Tqr(t))
]+

Wr(t)
.

Thus, we can now write down the differential equations describing the TCP-Vegas algorithm as

ṗℓ(t) =
1
cℓ
(yℓ − cℓ)+pℓ , Ẇr(t) =

[sign(αTpr − xr(t)Tqr(t))
Tpr + Tqr(t)

]+
Wr

, xr(t)≜
Wr(t)

Tpr + Tqr(t)
, Tq,r(t)≜ ∑

ℓ∈L
Rℓ,r pℓ(t).

The above is not the same as the dual algorithm that we derived before. However, the price update dynam-
ics are the same as the price update for the dual algorithm. Each source r, attempts to increase or decrease
the rate based on whether xr is less than or greater than α

Tpr
Tqr(t)

. Denoting the equilibrium values of rate

and queueing delay for route r ∈ S and price for link ℓ ∈ L as x̂r, T̂qr, p̂ℓ respectively, it is clear the source
attempts to drive the system towards

x̂r = α
Tpr

T̂qr
= α

Tpr

∑ℓ∈L Rℓ,r p̂ℓ
=

αTpr

qr
,

which is the desired source behavior for a dual congestion controller. Thus, one can interpret TCP-Vegas as
an algorithm that approximates the dual congestion control algorithm.

1.4 FAST TCP

A modification of TCP-Vegas called FAST-TCP has been suggested for very high-speed networks. In FAST-
TCP, the window size is increased or decreased depending upon how far the window size is from a desired
equilibrium point. The fluid model describing the protocol is

ṗℓ(t) =
1
cℓ
(yℓ − cℓ)+pℓ , Ẇr(t) = γr(αr − xr(t)Tqr(t))+Wr

, xr(t) =
Wr(t)

Tpr + Tqr(t)
, Tq,r(t)≜ ∑

ℓ∈L
Rℓ,r pℓ(t),

where αr determines the desired equilibrium point and γr is a scaling constant. Replacing the sign function
in TCP-Vegas with the difference between the current operating point and the desired equilibrium allows
FAST-TCP to rapidly approach the desired equilibrium point.

3

	 TCP-Vegas
	 A delay based algorithm
	A resource allocation algorithm
	Relation to dual algorithms and extensions
	FAST TCP

