Lecture-01: Continuous Time Markov Chains

1 Markov Process

Definition 1.1. Consider a real-valued stochastic process X : 2 — X®+ indexed by positive reals and
state space X, adapted to its natural filtration Fo = (F; : t € Ry) where F; £ o(X,,s < t) forallt € R,.
Then, X is a Markov process if it satisfies the Markov property. That is, for any Borel measurable set
A € B(X), the distribution of the future states conditioned on the present, is independent of the past,
and

P{X: € A} | Fs) =P{X: € A} | 0(Xs)), forall s <t eRy.

Definition 1.2. A Markov process X : Q — X®+ with countable state space X is called continuous
time Markov chain (CTMC).

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times 0 < #; <
<o <ty < tand states x1,...,Tm,y € X, we have

P{Xe =y} | MLy {Xe, = ai}) = PUXe =y} | {Xe,, = 2m}).

Example 1.3 (Counting process). Any simple counting process N : Q — Z]i* with independent
increments is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC.
Countability of the state space is clear from the definition of the counting process. For Markov property,
we observe that for ¢t > s, the increment N; — Ny is independent of F,. Let Fo = (F; : t € Ry) be the
natural filtration for process N, then

Eln=3 | Fol = Y Ellgn—jve=y | Fol = D Liv=ayEl(n,—n.—j—iy = E[L{n,—j} | o(No)].
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1.1 Transition probability kernel

Definition 1.4. We define the transition probability from state z at time s to state y at time ¢ + s
as
Pry(s,s +1) £ P{Xore = y} | { X, =2}).

Definition 1.5. The Markov process has homogeneous transitions for all states x,y € X and all times
57t S R+, if

Ply(t) é sz(o,t) = PJ;y(S,S —+ t)

We denote the transition probability kernel/function at time ¢ by P(t) £ (P, (t) : 7,y € X).

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump
transition probabilities. We will assume that the sample path of the process X is right continuous with
left limits at each time ¢ € R,.

Remark 3. Conditioned on the initial state of the process is x, we denote the conditional probability for
any event A € F as P,(A) = P(A | {Xo = z}) and the conditional expectation for any random variable
Y:Q—-RasE,Y 2E[Y | {X, =z}

Lemma 1.6 (Stochasticity). Transition kernel P : R — [0,1]%*% at each time t € R, is a stochastic
matriz.

Proof. From the countable partition of the state space X, we can write 1 = P, ({X; € X}) = >_, cn Puy(t)
for any state x € X. O



Remark 4. The stochastic property of P(t) implies that the transition kernel is a map P : R, — M(X)*
and each row x of P(t) is a conditional probability mass function for states of X; given the initial
condition Xy = x.

Lemma 1.7 (Semigroup property). Transition probability kernel P : Ry — M(X)X satisfies the
semigroup property, i.e. P(s+t) = P(s)P(t) for all s,t € Ry.

Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write

Poy(s+1) = Pay(0,5+ ) = Y Poz(0,8)Poy(s, s+ 1) = Y Puz(0,8)Pay(0,1) = [P() P(t) -
z€X zeX

O

Lemma 1.8 (Continuity). Transition probability kernel P : Ry — M(X)* for a homogeneous CTMC
X : Q — XB+ is a continuous function of time t € Ry, such that limy o P(t) = I, the identity matriz.

Proof. We will first show the continuity of transition kernel at time ¢ = 0. From right continuity of
sample paths for process X, we have lim; o X; = Xy and from continuity of probability functions we get
1iIntj,(] P, {Xt = y} =P, {hmt,LO X = y} = Imy

Fix a time ¢t € R4, to write the difference P(t + h) — P(t) = P(t)(P(h) — I) using the semigroup
property of the transition kernel. The continuity of transition kernel at time ¢ = 0, and boundedness of
P(t) implies continuity of P(t) at all times t € R. O

Remark 5. Consider a time-homogeneous CTMC X : Q — X+ with transition kernel P : R, —
[0, 1]**X. Then, for all times 0 < t; < --- < t,,, and states xq, 1, ..., T, € X, we have

P(NiLy {th =z} [{Xo =w0}) = Prowy (t1) Peyay (t2 — 1) oo Py oy, (B — tie1)-

If the initial distribution is vy € M(X) such that vo(z) = P {Xy = 2} for each x € X, then we observe
that all finite dimensional distributions of the CTMC X are governed by the initial distribution vy and
the transition probability kernel P. That is,

P00y (Ko = o1} ) = 3 10(@0)Prgas (1) - Payy s (b = ).
zo€EX

1.2 Strong Markov property

Definition 1.9. A net of event spaces denoted Fo = (F; C F: ¢t € T) is called a filtration if the index
set T is totally ordered and the net is nondecreasing, that is F; C F; for all s < t.

Definition 1.10. A random variable 7 :  — T defined on a probability space (Q,F, P) is called a
stopping time with respect to a filtration F, if 7 is almost surely finite and the event {r < ¢} € F; for
allt e T.

Definition 1.11. Consider a real-valued random process X indexed by the ordered set T on the prob-
ability space (2, F, P). The process X is called adapted to the filtration F,, if for each t € T', we have
o(X¢) € F; or X; H(—o0,x] € F; for each x € R.

Definition 1.12. For the random process X : Q — X%+, we define the event space generated by all
random variables until time ¢t € R, as Gy £ 0(Xs,s < t). The natural filtration associated with a random
process X : Q — X®+ is given by Go = (Gr:teRy)

Definition 1.13. For a stopping time 7 : 2 — R, adapted to the filtration JF,, the stopped o-algebra
is defined
T, 2{AcT o An{r<tleTFforallt € T}.

Definition 1.14. Let X : Q — X®+ be a real valued Markov process adapted to its natural filtration F,.
Let 7 be a stopping time with respect to this filtration, then the process X is called strongly Markov
if for all x € R and ¢ > 0, we have

Ellix, <oy | Fr] = EBllix, <oy | 0(X7)]- (1)

Theorem 1.15. Let X : Q — X®+ be any real-valued Markov process with right-continuous sample
paths, adapted to its natural filtration Fe. If the map t — E[f(Xs) | 0(X})] is right-continuous for each
bounded continuous function f, then X is strongly Markov.



Proof. Let f : R — R be a bounded continuous function, ¢ > 0, and 7 be an F,-adapted stopping time. It
suffices to show that f(X;) satisfies the strong Markov property. For each m € N, consider the intervals
Iim = ((k—1)27™ k27™] for all k € [22™], and define

22771

Tm £ Z k2_m]l{.,.€[k1m}.
k=1

We observe that 7, is adapted to F, and takes countable values for each m. Further, we have 71 ;<omy <
Tm < 2™ and 7y, is decreasing in m. From a.s. finiteness of stopping time 7, for almost all outcomes
w € Q there exists an mg(w) € N such that 7 < 7,,. Hence, 7,,, | 7 almost surely. Since 7 < 7y, it
follows that 3. C 3 . From the strong Markov property for the Markov process X at countably valued
stopping times, we have

Ef(Xr,,+¢) | Fr] = BIf (X7, 40) | 0(X7,)]-

From the orthogonality property of conditional expectation, it follows that for each A € ¥, C F, | we
have
E[laf(Xr, +¢)] = E[LAE[f (X7, +¢) |0 (X7, )]].
Taking limit as 7,,, J 7 on both sides and applying dominated convergence theorem, we get
E[laf(Xr40)] = E[LAE[f (Xr40) [0 (X7)]].
O

Lemma 1.16. A continuous time Markov chain X : Q — X®+ has the strong Markov property.

Proof. Tt follows from the right continuity of the CTMC process X, and the fact that the map ¢ —
E[f(Xi+s) | 0(Xy)] is right-continuous for any bounded continuous function f : X — R. To see the right
continuity of the map, we observe that

E[f(Xt4s) ‘ o(Xy)] = Z Iix,=2} Z Pry(s)f(y)-

zeX yeX

Right-continuity of the map follows from the right continuity of the sample paths of process X, right-
continuity and boundedness of the kernel function, and boundedness and continuity of f, and bounded
convergence theorem. O

Corollary 1.17. A pure jump CTMC X satisfies the following strong Markov property. For any stopping
time T adapted to the natural filtration of X, finite m € N, finite times 0 < t1 < --- < t,,,, any event
H € ., and states xg,x1,..., T, € X, we have

POL X = 2} | HO{Xy = 20}) = Pro (ML { X2, = 21})-

Remark 6. In particular, for a pure-jump time-homogeneous CTMC X, stopping time 7, and event
H € ., we have
P({Xrss =y} [ {X, = 2} N H) = Poy (s).

1.3 Generator Matrix

Definition 1.18 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity,

we can define e £ T+ ¢ ‘2—,.

Lemma 1.19. For a homogeneous CTMC, we can write the transition kernel P(t) = e'@ for all t € Ry
in terms of a constant matriz e9 2 P(1).

Proof. This follows from the semigroup property and the continuity of transition kernel P(t). In par-
ticular, we notice that P(n) = P(1)" and P(L) = P(1)m for all m,n € N. Since, any rational number
q € Q can be expressed as a ratio of integers with no common divisor, we get

P(g)=P(1)?, qe€Q.

Since the rationals are dense in reals and P is a continuous function, it follows that P(t) = P(1)* for all
t € R, and the result follows from the definition of @ such that e? = P(1). O



Remark 7. From Lemma for a homogeneous CTMC X : © — X+, we can write the probability
transition kernel function t — P(t) = !, where e? = P(1). The matrix Q € R**¥ is called the
generator matrix for the homogeneous CTMC X. From the Definition for the exponentiation of
matrix, this implies that
tTL
P(t):IJrZEQ”, teRy. (2)
neN
This relation implies that the probability transition kernel can be written in terms of this fundamental
generator matrix Q.

Definition 1.20 (Generator matrix). For a homogeneous continuous time Markov chain X :  — X+
with transition kernel function P : R, — M(X)%, the generator matrix @ € R**¥ is defined as the
following limit when it exists
Pt)—1
A 7.
=1 .
Qi

Remark 8. From Eq. , it is clear that the generator matrix is the limit defined above.

Remark 9. From the semigroup property of probability kernel function and definition of generator matrix,
we get the backward equation

. P(s+t)—Pt) . (P(s)—-1) .
g —im———— =l Pl) = QP(t), tER,.

Similarly, we can also get the forward equation

dP(t) .. P(s+t)—P(t) . (P(s)—=1I)

o m— o S POlim e = PR, FE Ry
Both these results need a formal justification of exchange of limits and summation, and we next present
a formal proof for these two equations.

Theorem 1.21 (backward equation). For a homogeneous CTMC X : Q — X®+ with transition kernel
function P : Ry — M(X)X and generator matriz Q € R¥*Y | we have

dP(t

% =QP(t), teR,.

Proof. Fix states =,y € X and we consider the liminf and limsup of (z,y)th term of Ls)fl)P(t). For
any finite subset F' C X containing z, we obtain

A xZ\°)  T=xZ) > A xZ\°)  TxZ) _
hr?&)nf . P.,(t) > hr?&)nf S P.,(t) E Qz:Poy(t).

zeX z€EF zEF

The above inequality holds for any finite set F' C X, and thus taking supremum over increasing sets F,
we get the lower bound. For the upper bound, we observe for any finite subset F' C X containing state
z, we have 3o p(Prz(s) — Ioz) + 32 e p(Prz(8) — Iz2) = 0. Therefore,

lim sup Z Mpzy(t) < limsup (Z M‘sz(t) — Z w>

s10 2% S 50 ey ey
= Z szsz(t> - Z Q;vz~
zelF zEF

The above inequality holds for any finite set F' C X, and thus taking infimum over increasing sets F' and
recognizing that ) ., Q.. = 0, we get the upper bound. O

Theorem 1.22 (forward equation). For a homogeneous CTMC X : Q — X®+ with transition kernel
function P : Ry — M(X)X and generator matriz Q € RX¥*Y | we have

dP(t)

=P R..
7 (H)Q, teRy



(PO)=1) e

s .

Proof. Fix states x,y € X and we consider the liminf and limsup of (z,y)th term of P(t)
take a finite set F' C X containing state y, to obtain the lower bound

o (Pay(s) — Iy) L (Poy(s) — Ly)

1 f P, (t)—————= > | fP,(t)————— > P.(t)Qy-

minf | Pe-(t) - > liminf P () , D Pea()Qsy
zeX z€F z€F

By taking limiting value for increasing sequence of finite sets F© C X, we obtain the lower bound. To

obtain the upper bound, we observe for any finite subset F' C X containing state y, we have

lim sup Z P,. (t)M < lim sup <Z P..(t) (Py (S)s_ L) + Z PZ2(3)> = Z P, (t)sz-i-Z Q-y.

3 S Y
540 z€X 540 z€F z¢F z€F z¢ F

The second equality follows from monotone convergence theorem. Taking infimum over increasing sets
F and from the fact that Ez¢x Q.y = 0, we get the upper bound. O



	Markov Process
	Transition probability kernel
	Strong Markov property
	Generator Matrix


