
Lecture-01: Continuous Time Markov Chains

1 Markov Process

Definition 1.1. Consider a real-valued stochastic process X : Ω → XR+ indexed by positive reals and
state space X, adapted to its natural filtration F• = (Ft : t ∈ R+) where Ft ≜ σ(Xs, s ⩽ t) for all t ∈ R+.
Then, X is a Markov process if it satisfies the Markov property. That is, for any Borel measurable set
A ∈ B(X), the distribution of the future states conditioned on the present, is independent of the past,
and

P ({Xt ∈ A} | Fs) = P ({Xt ∈ A} | σ(Xs)), for all s ⩽ t ∈ R+.

Definition 1.2. A Markov process X : Ω → XR+ with countable state space X is called continuous
time Markov chain (CTMC).

Remark 1. The Markov property for the CTMCs can be interpreted as follows. For all times 0 < t1 <
· · · < tm < t and states x1, . . . , xm, y ∈ X, we have

P ({Xt = y}
∣∣ ∩m

k=1 {Xtk = xk}) = P ({Xt = y}
∣∣ {Xtm = xm}).

Example 1.3 (Counting process). Any simple counting process N : Ω → ZR+

+ with independent
increments is a CTMC. This implies any (possibly time-inhomogeneous) Poisson process is a CTMC.
Countability of the state space is clear from the definition of the counting process. For Markov property,
we observe that for t > s, the increment Nt − Ns is independent of Fs. Let F• = (Ft : t ∈ R+) be the
natural filtration for process N , then

E[1{Nt=j} | Fs] =
∑
i∈Z+

E[1{Nt=j,Ns=i} | Fs] =
∑
i∈Z+

1{Ns=i}E1{Nt−Ns=j−i} = E[1{Nt=j} | σ(Ns)].

1.1 Transition probability kernel

Definition 1.4. We define the transition probability from state x at time s to state y at time t+ s
as

Pxy(s, s+ t) ≜ P ({Xs+t = y}
∣∣ {Xs = x}).

Definition 1.5. The Markov process has homogeneous transitions for all states x, y ∈ X and all times
s, t ∈ R+, if

Pxy(t) ≜ Pxy(0, t) = Pxy(s, s+ t).

We denote the transition probability kernel/function at time t by P (t) ≜ (Pxy(t) : x, y ∈ X).

Remark 2. We will mainly be interested in continuous time Markov chains with homogeneous jump
transition probabilities. We will assume that the sample path of the process X is right continuous with
left limits at each time t ∈ R+.

Remark 3. Conditioned on the initial state of the process is x, we denote the conditional probability for
any event A ∈ F as Px(A) ≜ P (A | {X0 = x}) and the conditional expectation for any random variable
Y : Ω → R as ExY ≜ E[Y | {X0 = x}].

Lemma 1.6 (Stochasticity). Transition kernel P : R+ → [0, 1]X×X at each time t ∈ R+ is a stochastic
matrix.

Proof. From the countable partition of the state space X, we can write 1 = Px({Xt ∈ X}) =
∑

y∈X Pxy(t)
for any state x ∈ X.
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Remark 4. The stochastic property of P (t) implies that the transition kernel is a map P : R+ → M(X)X

and each row x of P (t) is a conditional probability mass function for states of Xt given the initial
condition X0 = x.

Lemma 1.7 (Semigroup property). Transition probability kernel P : R+ → M(X)X satisfies the
semigroup property, i.e. P (s+ t) = P (s)P (t) for all s, t ∈ R+.

Proof. From the Markov property and homogeneity of CTMC, and law of total probability, we can write

Pxy(s+ t) = Pxy(0, s+ t) =
∑
z∈X

Pxz(0, s)Pzy(s, s+ t) =
∑
z∈X

Pxz(0, s)Pzy(0, t) = [P (s)P (t)]xy.

Lemma 1.8 (Continuity). Transition probability kernel P : R+ → M(X)X for a homogeneous CTMC
X : Ω → XR+ is a continuous function of time t ∈ R+, such that limt↓0 P (t) = I, the identity matrix.

Proof. We will first show the continuity of transition kernel at time t = 0. From right continuity of
sample paths for process X, we have limt↓0 Xt = X0 and from continuity of probability functions we get
limt↓0 Px {Xt = y} = Px {limt↓0 Xt = y} = Ixy.

Fix a time t ∈ R+, to write the difference P (t + h) − P (t) = P (t)(P (h) − I) using the semigroup
property of the transition kernel. The continuity of transition kernel at time t = 0, and boundedness of
P (t) implies continuity of P (t) at all times t ∈ R+.

Remark 5. Consider a time-homogeneous CTMC X : Ω → XR+ with transition kernel P : R+ →
[0, 1]X×X. Then, for all times 0 < t1 < · · · < tm and states x0, x1, . . . , xm ∈ X, we have

P (∩m
k=1 {Xtk = xk} | {X0 = x0}) = Px0x1(t1)Px1x2(t2 − t1) . . . Pxm−1xm(tm − tm−1).

If the initial distribution is ν0 ∈ M(X) such that ν0(x) = P {X0 = x} for each x ∈ X, then we observe
that all finite dimensional distributions of the CTMC X are governed by the initial distribution ν0 and
the transition probability kernel P . That is,

P
(
∩m
k=1 {Xtk = xk}

)
=
∑
x0∈X

ν0(x0)Px0x1(t1) . . . Pxm−1xm(tm − tm−1).

1.2 Strong Markov property

Definition 1.9. A net of event spaces denoted F• = (Ft ⊆ F : t ∈ T ) is called a filtration if the index
set T is totally ordered and the net is nondecreasing, that is Fs ⊆ Ft for all s ⩽ t.

Definition 1.10. A random variable τ : Ω → T defined on a probability space (Ω,F, P ) is called a
stopping time with respect to a filtration F• if τ is almost surely finite and the event {τ ⩽ t} ∈ Ft for
all t ∈ T .

Definition 1.11. Consider a real-valued random process X indexed by the ordered set T on the prob-
ability space (Ω,F, P ). The process X is called adapted to the filtration F•, if for each t ∈ T , we have
σ(Xt) ⊆ Ft or X

−1
t (−∞, x] ∈ Ft for each x ∈ R.

Definition 1.12. For the random process X : Ω → XR+ , we define the event space generated by all
random variables until time t ∈ R+ as Gt ≜ σ(Xs, s ⩽ t). The natural filtration associated with a random
process X : Ω → XR+ is given by G• = (Gt : t ∈ R+)

Definition 1.13. For a stopping time τ : Ω → R+ adapted to the filtration F•, the stopped σ-algebra
is defined

Fτ ≜ {A ∈ F∞ : A ∩ {τ ⩽ t} ∈ Ft for all t ∈ T} .

Definition 1.14. Let X : Ω → XR+ be a real valued Markov process adapted to its natural filtration F•.
Let τ be a stopping time with respect to this filtration, then the process X is called strongly Markov
if for all x ∈ R and t > 0, we have

E[1{Xt+τ⩽x} | Fτ ] = E[1{Xt+τ⩽x} | σ(Xτ )]. (1)

Theorem 1.15. Let X : Ω → XR+ be any real-valued Markov process with right-continuous sample
paths, adapted to its natural filtration F•. If the map t 7→ E[f(Xs) | σ(Xt)] is right-continuous for each
bounded continuous function f , then X is strongly Markov.
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Proof. Let f : R → R be a bounded continuous function, t ⩾ 0, and τ be an F•-adapted stopping time. It
suffices to show that f(Xt) satisfies the strong Markov property. For each m ∈ N, consider the intervals
Ik,m ≜ ((k − 1)2−m, k2−m] for all k ∈ [22m], and define

τm ≜
22m∑
k=1

k2−m
1{τ∈Ik,m}.

We observe that τm is adapted to F• and takes countable values for eachm. Further, we have τ1{τ⩽2m} ⩽
τm ⩽ 2m and τm is decreasing in m. From a.s. finiteness of stopping time τ , for almost all outcomes
ω ∈ Ω there exists an m0(ω) ∈ N such that τ ⩽ τm. Hence, τm ↓ τ almost surely. Since τ ⩽ τm, it
follows that Fτ ⊆ Fτm . From the strong Markov property for the Markov process X at countably valued
stopping times, we have

E[f(Xτm+t) | Fτm ] = E[f(Xτm+t) | σ(Xτm)].

From the orthogonality property of conditional expectation, it follows that for each A ∈ Fτ ⊆ Fτm , we
have

E[1Af(Xτm+t)] = E[1AE[f(Xτm+t)|σ(Xτm)]].

Taking limit as τm ↓ τ on both sides and applying dominated convergence theorem, we get

E[1Af(Xτ+t)] = E[1AE[f(Xτ+t)|σ(Xτ )]].

Lemma 1.16. A continuous time Markov chain X : Ω → XR+ has the strong Markov property.

Proof. It follows from the right continuity of the CTMC process X, and the fact that the map t 7→
E[f(Xt+s)

∣∣ σ(Xt)] is right-continuous for any bounded continuous function f : X → R. To see the right
continuity of the map, we observe that

E[f(Xt+s)
∣∣ σ(Xt)] =

∑
x∈X

1{Xt=x}
∑
y∈X

Pxy(s)f(y).

Right-continuity of the map follows from the right continuity of the sample paths of process X, right-
continuity and boundedness of the kernel function, and boundedness and continuity of f , and bounded
convergence theorem.

Corollary 1.17. A pure jump CTMC X satisfies the following strong Markov property. For any stopping
time τ adapted to the natural filtration of X, finite m ∈ N, finite times 0 < t1 < · · · < tm, any event
H ∈ Fτ , and states x0, x1, . . . , xm ∈ X, we have

P (∩m
k=1 {Xtk+τ = xk} | H ∩ {Xτ = x0}) = Px0

(∩m
k=1 {Xtk = xk}).

Remark 6. In particular, for a pure-jump time-homogeneous CTMC X, stopping time τ , and event
H ∈ Fτ , we have

P ({Xτ+s = y} | {Xτ = x} ∩H) = Pxy(s).

1.3 Generator Matrix

Definition 1.18 (Exponentiation of a matrix). For a matrix A with spectral radius less than unity,
we can define eA ≜ I +

∑
n∈N

An

n! .

Lemma 1.19. For a homogeneous CTMC, we can write the transition kernel P (t) = etQ for all t ∈ R+

in terms of a constant matrix eQ ≜ P (1).

Proof. This follows from the semigroup property and the continuity of transition kernel P (t). In par-

ticular, we notice that P (n) = P (1)n and P ( 1
m ) = P (1)

1
m for all m,n ∈ N. Since, any rational number

q ∈ Q can be expressed as a ratio of integers with no common divisor, we get

P (q) = P (1)q, q ∈ Q.

Since the rationals are dense in reals and P is a continuous function, it follows that P (t) = P (1)t for all
t ∈ R+ and the result follows from the definition of Q such that eQ = P (1).
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Remark 7. From Lemma 1.19 for a homogeneous CTMC X : Ω → XR+ , we can write the probability
transition kernel function t 7→ P (t) = etQ, where eQ = P (1). The matrix Q ∈ RX×X is called the
generator matrix for the homogeneous CTMC X. From the Definition 1.18 for the exponentiation of
matrix, this implies that

P (t) = I +
∑
n∈N

tn

n!
Qn, t ∈ R+. (2)

This relation implies that the probability transition kernel can be written in terms of this fundamental
generator matrix Q.

Definition 1.20 (Generator matrix). For a homogeneous continuous time Markov chainX : Ω → XR+

with transition kernel function P : R+ → M(X)X, the generator matrix Q ∈ RX×X is defined as the
following limit when it exists

Q ≜ lim
t↓0

P (t)− I

t
.

Remark 8. From Eq. (2), it is clear that the generator matrix is the limit defined above.

Remark 9. From the semigroup property of probability kernel function and definition of generator matrix,
we get the backward equation

dP (t)

dt
= lim

s↓0

P (s+ t)− P (t)

s
= lim

s↓0

(P (s)− I)

s
P (t) = QP (t), t ∈ R+.

Similarly, we can also get the forward equation

dP (t)

dt
= lim

s↓0

P (s+ t)− P (t)

s
= P (t) lim

s↓0

(P (s)− I)

s
= P (t)Q, t ∈ R+.

Both these results need a formal justification of exchange of limits and summation, and we next present
a formal proof for these two equations.

Theorem 1.21 (backward equation). For a homogeneous CTMC X : Ω → XR+ with transition kernel
function P : R+ → M(X)X and generator matrix Q ∈ RX×X, we have

dP (t)

dt
= QP (t), t ∈ R+.

Proof. Fix states x, y ∈ X and we consider the lim inf and lim sup of (x, y)th term of (P (s)−I)
s P (t). For

any finite subset F ⊆ X containing x, we obtain

lim inf
s↓0

∑
z∈X

(Pxz(s)− Ixz)

s
Pzy(t) ⩾

∑
z∈F

lim inf
s↓0

(Pxz(s)− Ixz)

s
Pzy(t) =

∑
z∈F

QxzPzy(t).

The above inequality holds for any finite set F ⊆ X, and thus taking supremum over increasing sets F ,
we get the lower bound. For the upper bound, we observe for any finite subset F ⊆ X containing state
x, we have

∑
z/∈F (Pxz(s)− Ixz) +

∑
z∈F (Pxz(s)− Ixz) = 0. Therefore,

lim sup
s↓0

∑
z∈X

(Pxz(s)− Ixz)

s
Pzy(t) ⩽ lim sup

s↓0

(∑
z∈F

(Pxz(s)− Ixz)

s
Pzy(t)−

∑
z∈F

(Pxz(s)− Ixz)

s

)
=
∑
z∈F

QxzPzy(t)−
∑
z∈F

Qxz.

The above inequality holds for any finite set F ⊆ X, and thus taking infimum over increasing sets F and
recognizing that

∑
z∈X Qxz = 0, we get the upper bound.

Theorem 1.22 (forward equation). For a homogeneous CTMC X : Ω → XR+ with transition kernel
function P : R+ → M(X)X and generator matrix Q ∈ RX×X, we have

dP (t)

dt
= P (t)Q, t ∈ R+.
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Proof. Fix states x, y ∈ X and we consider the lim inf and lim sup of (x, y)th term of P (t) (P (s)−I)
s . We

take a finite set F ⊆ X containing state y, to obtain the lower bound

lim inf
s↓0

∑
z∈X

Pxz(t)
(Pzy(s)− Izy)

s
⩾
∑
z∈F

lim inf
s↓0

Pxz(t)
(Pzy(s)− Izy)

s
⩾
∑
z∈F

Pxz(t)Qzy.

By taking limiting value for increasing sequence of finite sets F ⊆ X, we obtain the lower bound. To
obtain the upper bound, we observe for any finite subset F ⊆ X containing state y, we have

lim sup
s↓0

∑
z∈X

Pxz(t)
(Pzy(s)− Izy)

s
⩽ lim sup

s↓0

(∑
z∈F

Pxz(t)
(Pzy(s)− Izy)

s
+
∑
z/∈F

Pzy(s)

s

)
=
∑
z∈F

Pxz(t)Qzy+
∑
z/∈F

Qzy.

The second equality follows from monotone convergence theorem. Taking infimum over increasing sets
F and from the fact that

∑
z/∈X Qzy = 0, we get the upper bound.
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