Lecture-07: Mean-field model

1 Power-of- d choices

Consider N queues with independent service times distributed exponentially with mean 1 , and a Poisson arrival to the system with rate $N \lambda$. Each arriving task selects a uniformly random subset of d out of N queues. The arriving task is dispatched to the smallest queue out of these selected d queues. We denote the queue length at the nth queue at time t as $X_{n}^{N}(t): \Omega \rightarrow Z \triangleq \mathbb{Z}_{+}$.

Definition 1.1. For the process X, the associated empirical distribution process is denoted by $A^{N}: \Omega \rightarrow$ $\mathcal{M}_{N}\left(\mathbb{Z}_{+}\right)^{\mathbb{R}_{+}}$, and we define associated complementary distribution process for all $k \in \mathbb{Z}_{+}$and $t \in \mathbb{R}_{+}$, as

$$
B_{k}^{N}(t) \triangleq \sum_{j \geqslant k} A_{j}^{N}(t)=\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\left\{X_{n}^{N}(t) \geqslant k\right\}} .
$$

For a state $x \in \mathbb{Z}_{+}^{N}$, we denote the complementary distribution of states as $b \triangleq \sum_{k \in \mathbb{Z}_{+}} e_{k}\left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{\left\{x_{n} \geqslant k\right\}}\right)$.
Proposition 1.2. Defining $X \triangleq Z^{N}$, we observe that $X^{N}: \Omega \rightarrow X^{\mathbb{R}_{+}}$is a continuous time Markov chain with the associated generator matrix defined for all $x, y \in X$ as

$$
Q_{x y}^{X^{N}}= \begin{cases}\mathbb{1}_{\left\{x_{n}>0\right\}}, & y=x-e_{n}, \\ \lambda \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}} \frac{\binom{N b_{k}}{d^{\prime}}-\binom{N b_{k+1}}{d}}{\binom{N}{d}\left(b_{k}-b_{k+1}\right)} & y=x+e_{n} .\end{cases}
$$

Proof. We observe that a transition takes place at one of the N queues when there is an arrival to the system with rate $N \lambda$, or a departure from one of the non-empty queues. It follows that the holding rate for the CTMC X in state x is $N \lambda+N b_{1}(x)$. Let F be the random d subset of N queues chosen by an arrival. Then, an arrival to queue n takes place if $n \in F$ and $x_{m}>x_{n}$ for all queues $m \in F \backslash\{n\}$. Therefore, we can write the probability of an arrival to queue n as

$$
\begin{aligned}
& \frac{1}{\binom{N}{d}} \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}} \sum_{F \subseteq[N] \backslash\{n\}:|F|=d-1}\left(\sum_{S \subseteq F} \frac{1}{|S|} \prod_{r \in S} \mathbb{1}_{\left\{x_{r}=k\right\}} \prod_{m \in F \backslash S} \mathbb{1}_{\left\{x_{m} \geqslant k+1\right\}}\right) \\
& =\frac{1}{\binom{N}{d}} \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}} \sum_{j=0}^{d-1} \frac{1}{j+1}\binom{N\left(b_{k}-b_{k+1}\right)-1}{j}\binom{N b_{k+1}}{d-1-j} \\
& =\frac{1}{\binom{N}{d} N\left(b_{k}-b_{k+1}\right)} \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}} \sum_{j=1}^{d}\binom{N\left(b_{k}-b_{k+1}\right)-1}{j}\binom{N b_{k+1}}{d-j}, \\
& =\frac{1}{\binom{N}{d} N\left(b_{k}-b_{k+1}\right)} \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}}\left[\binom{N b_{k}}{d}-\binom{N b_{k+1}}{d}\right] .
\end{aligned}
$$

Corollary 1.3. For $d=2$, we can write the associated generator matrix for all $x, y \in \mathcal{X}$ as

$$
Q_{x y}^{X^{N}}= \begin{cases}\mathbb{1}_{\left\{x_{n}>0\right\}}, & y=x-e_{n}, \\ \lambda \sum_{k \in \mathbb{Z}_{+}} \mathbb{1}_{\left\{x_{n}=k\right\}} \frac{b_{k}\left(N b_{k}-1\right)-b_{k+1}\left(N b_{k+1}-1\right)}{(N-1)\left(b_{k}-b_{k+1}\right)}, & y=x+e_{n}\end{cases}
$$

Remark 1. We observe that $Q_{x y}^{X^{N}}=\sum_{n=1}^{N} f\left(x_{n}, y_{n}, a\right) \mathbb{1}_{\left\{y_{n} \neq x_{n}\right\}}$ and hence the empirical distribution evolves as a Markov process.
Proposition 1.4. The complementary distribution process $B^{N}: \Omega \rightarrow[0,1]^{\mathbb{Z}_{+}}$for power-of-d selection evolves as a Markov process with generator matrix defined for all b, $c \in[0,1]^{\mathbb{Z}_{+}}$

$$
Q_{b, c}^{B^{N}} \triangleq \begin{cases}N\left(b_{k}-b_{k+1}\right), & c=b-\frac{1}{N} e_{k}, \\ N \lambda\left(\frac{\binom{N b_{k-1}}{d}-\binom{N b_{k}}{d}}{\binom{N}{d}}\right), & c=b+\frac{1}{N} e_{k} .\end{cases}
$$

Proof. We observe that only possible transitions are of the form $b \rightarrow c=b-\frac{1}{N} e_{k}$ and $b \rightarrow c=b+\frac{1}{N} e_{k}$ corresponding to a departure from a queue with length k and an arrival to a queue with length $k-1$ respectively. We can write

$$
Q_{b, c}^{B^{N}}= \begin{cases}\sum_{n=1}^{N} \mathbb{1}_{\left\{x_{n}=k\right\}}, & c=b-\frac{1}{N} e_{k}, \\ \lambda \sum_{n=1}^{N} \mathbb{1}_{\left\{x_{n}=k-1\right\}} \frac{\binom{N b_{k-1}}{d}-\binom{N b_{k}}{d}}{\binom{N}{d}}, & c=b+\frac{1}{N} e_{k} .\end{cases}
$$

2 Mean-field model

Definition 2.1. Let $X \triangleq z^{N}$, and $X: \Omega \rightarrow X^{\mathbb{R}_{+}}$an N interacting particle CTMC such that $A^{N}: \Omega \rightarrow$ $\mathcal{M}_{N}(Z)^{\mathbb{R}_{+}}$is Markov with generator matrix $Q^{A^{N}}$. The sequence of CTMCs $\left(A^{N}: N \in \mathbb{N}\right)$ is called densitydependent family of CTMCs if the normalized generator matrix defined as $q \triangleq \frac{1}{N} Q^{A^{N}}$ is independent of N. For this family, we define the rate of change of distribution of states $f: \mathcal{M}(\mathcal{Z}) \rightarrow \mathbb{R}$ for each $a \in \mathcal{M}(\mathcal{Z})$ as

$$
\begin{equation*}
f(a) \triangleq \sum_{b \neq a} Q_{a b}(b-a) \tag{1}
\end{equation*}
$$

Remark 2. Recall that $P_{x}(t)=\mathbb{E}_{x}\left[X_{t}\right]$ and $\frac{d P(t)}{d t}=Q P(t)$. We observe that $f(a) \approx \mathbb{E}_{a} \frac{d A_{t}}{d t}$. To see this, we write for small t

$$
\mathbb{E}_{a}\left[A_{t}-A_{0}\right]=\sum_{b \in \mathcal{M}(X)} P_{a b}(t)(b-a) \approx t \sum_{b \in \mathcal{M}(X)} Q_{a b}(b-a)
$$

Definition 2.2. For a density dependent family of interacting particle CTMCs over particle state space Z, with rate of change function $f: \mathcal{M}(z) \rightarrow \mathbb{R}$ defined in $\mathbb{1}$, the mean field model is defined as

$$
\begin{equation*}
\frac{d}{d t} x(t)=f(x(t)), \quad x(t) \in \mathcal{D} \subseteq \mathcal{M}(Z) \tag{2}
\end{equation*}
$$

Example 2.3 (SIS epidemic model). We can write the normalized generator matrix for SIS epidemic model as

$$
q_{a b}= \begin{cases}a_{0} \alpha+a_{0} a_{1} \beta, & (b-a)=\frac{1}{N}\left(e_{1}-e_{0}\right) \\ a_{1}, & (b-a)=\frac{1}{N}\left(e_{0}-e_{1}\right)\end{cases}
$$

In this case, we can write the rate change function $f: \mathcal{M}(\mathcal{Z}) \rightarrow \mathbb{R}$ as

$$
f(a)=\left(a_{0} \alpha-a_{1}\left(1-a_{0} \beta\right)\right)\left(-e_{0}+e_{1}\right)
$$

Since $a_{0}+a_{1}=1$, the mean field model can be written as

$$
\frac{d}{d t} a_{0}(t)=-a_{0} \alpha-a_{0}\left(1-a_{0}\right) \beta+\left(1-a_{0}\right)
$$

The stationary point of this ODE is the solution to the equation $a_{0}^{2} \beta-a_{0}(\alpha+\beta+1)+1=0$, which is

$$
a_{0}^{*}=\frac{1+\alpha+\beta}{2 \beta}-\sqrt{\left(\frac{1+\alpha+\beta}{2 \beta}\right)^{2}-\frac{1}{\beta}} .
$$

Example 2.4 (Random multiple access). We can write the normalized generator matrix for random multiple access as

$$
q_{a b}= \begin{cases}\langle c, a\rangle-c_{z} a_{z}, & (b-a)=\frac{1}{N}\left(e_{z+1}-e_{z}\right), \\ c_{z} a_{z}, & (b-a)=\frac{1}{N}\left(e_{0}-e_{z}\right) .\end{cases}
$$

In this case, we can write the rate change function $f: \mathcal{M}(\mathcal{Z}) \rightarrow \mathbb{R}$ as

$$
f(a)=\sum_{z=0}^{r-1}\left(\langle c, a\rangle-c_{z} a_{z}\right)\left(e_{z+1}-e_{z}\right)+\sum_{z=1}^{r-1} c_{z} a_{z}\left(e_{0}-e_{z}\right)+\langle c, a\rangle\left(e_{0}-e_{r}\right)=\sum_{z=0}^{r-1} c_{z} a_{z}\left(e_{0}-e_{z+1}\right) .
$$

Since $a_{0}+\sum_{z=1}^{r} a_{z}=1$, the mean field model for $z \in[r]$ can be written as

$$
\frac{d}{d t} a_{z}(t)=-c_{z-1} a_{z-1}(t)
$$

Example 2.5 (Power-of- d choices). We can write the normalized generator matrix for random multiple access as

$$
q_{b c}= \begin{cases}\lambda\left(\frac{\binom{N b_{k-1}}{d}-\binom{N b_{k}}{d}}{\binom{N}{d}}\right), & (c-b)=\frac{1}{N} e_{k} \\ b_{k}-b_{k+1}, & (c-b)=-\frac{1}{N} e_{k}\end{cases}
$$

In this case, the rate of change of complementary distributions f, is given by

$$
f(b)=\sum_{k \in \mathbb{N}} e_{k}\left(\lambda\left(b_{k-1}^{d}-b_{k}^{d}\right)-\left(b_{k}-b_{k+1}\right)\right)
$$

Recall that $b_{0}=1$, and the mean field model can be written for all $k \in \mathbb{N}$ as

$$
\begin{equation*}
\frac{d}{d t} b_{k}(t)=\lambda\left(b_{k-1}^{d}-b_{k}^{d}\right)-\left(b_{k}-b_{k+1}\right) \tag{3}
\end{equation*}
$$

There is a unique stationary point of this ODE (3) with $\sum_{k \in \mathbb{Z}_{+}} b_{k}<\infty$ given by $b_{k}^{*}=\lambda^{\frac{d^{k}-1}{d-1}}$ for all $k \in \mathbb{Z}_{+}$. We observe that $b_{1}^{*}=\lambda$ the mean load of the system.

