
Lecture-07: Mean-field model

1 Power-of-d choices

Consider N queues with independent service times distributed exponentially with mean 1, and a Poisson
arrival to the system with rate Nλ. Each arriving task selects a uniformly random subset of d out of N
queues. The arriving task is dispatched to the smallest queue out of these selected d queues. We denote the
queue length at the nth queue at time t as XN

n (t) : Ω → Z ≜ Z+.

Definition 1.1. For the process X, the associated empirical distribution process is denoted by AN : Ω →
MN (Z+)

R+ , and we define associated complementary distribution process for all k ∈ Z+ and t ∈ R+, as

BN
k (t) ≜

∑
j⩾k

AN
j (t) =

1

N

N∑
n=1

1{XN
n (t)⩾k}.

For a state x ∈ ZN
+ , we denote the complementary distribution of states as b ≜

∑
k∈Z+

ek

(
1
N

∑N
n=1 1{xn⩾k}

)
.

Proposition 1.2. Defining X ≜ ZN , we observe that XN : Ω → XR+ is a continuous time Markov chain
with the associated generator matrix defined for all x, y ∈ X as

QXN

xy =

1{xn>0}, y = x− en,

λ
∑

k∈Z+
1{xn=k}

(Nbk
d )−(Nbk+1

d )
(Nd)(bk−bk+1)

y = x+ en.

Proof. We observe that a transition takes place at one of the N queues when there is an arrival to the system
with rate Nλ, or a departure from one of the non-empty queues. It follows that the holding rate for the
CTMC X in state x is Nλ+Nb1(x). Let F be the random d subset of N queues chosen by an arrival. Then,
an arrival to queue n takes place if n ∈ F and xm > xn for all queues m ∈ F \ {n}. Therefore, we can write
the probability of an arrival to queue n as

1(
N
d

) ∑
k∈Z+

1{xn=k}
∑

F⊆[N ]\{n}:|F |=d−1

( ∑
S⊆F

1

|S|
∏
r∈S

1{xr=k}
∏

m∈F\S

1{xm⩾k+1}

)

=
1(
N
d

) ∑
k∈Z+

1{xn=k}

d−1∑
j=0

1

j + 1

(
N(bk − bk+1)− 1

j

)(
Nbk+1

d− 1− j

)

=
1(

N
d

)
N(bk − bk+1)

∑
k∈Z+

1{xn=k}

d∑
j=1

(
N(bk − bk+1)− 1

j

)(
Nbk+1

d− j

)
,

=
1(

N
d

)
N(bk − bk+1)

∑
k∈Z+

1{xn=k}

[(Nbk
d

)
−
(
Nbk+1

d

)]
.

Corollary 1.3. For d = 2, we can write the associated generator matrix for all x, y ∈ X as

QXN

xy =

{
1{xn>0}, y = x− en,

λ
∑

k∈Z+
1{xn=k}

bk(Nbk−1)−bk+1(Nbk+1−1)
(N−1)(bk−bk+1)

, y = x+ en.

1



Remark 1. We observe that QXN

xy =
∑N

n=1 f(xn, yn, a)1{yn ̸=xn} and hence the empirical distribution evolves
as a Markov process.

Proposition 1.4. The complementary distribution process BN : Ω → [0, 1]Z+ for power-of-d selection evolves
as a Markov process with generator matrix defined for all b, c ∈ [0, 1]Z+

QBN

b,c ≜

N(bk − bk+1), c = b− 1
N ek,

Nλ
(
(Nbk−1

d )−(Nbk
d )

(Nd)

)
, c = b+ 1

N ek.

Proof. We observe that only possible transitions are of the form b → c = b − 1
N ek and b → c = b + 1

N ek
corresponding to a departure from a queue with length k and an arrival to a queue with length k − 1
respectively. We can write

QBN

b,c =


∑N

n=1 1{xn=k}, c = b− 1
N ek,

λ
∑N

n=1 1{xn=k−1}
(Nbk−1

d )−(Nbk
d )

(Nd)
, c = b+ 1

N ek.

2 Mean-field model

Definition 2.1. Let X ≜ ZN , and X : Ω → XR+ an N interacting particle CTMC such that AN : Ω →
MN (Z)R+ is Markov with generator matrix QAN

. The sequence of CTMCs (AN : N ∈ N) is called density-

dependent family of CTMCs if the normalized generator matrix defined as q ≜ 1
NQAN

is independent of
N . For this family, we define the rate of change of distribution of states f : M(Z) → R for each a ∈ M(Z)
as

f(a) ≜
∑
b̸=a

Qab(b− a). (1)

Remark 2. Recall that Px(t) = Ex[Xt] and
dP (t)
dt = QP (t). We observe that f(a) ≈ Ea

dAt

dt . To see this, we
write for small t

Ea[At −A0] =
∑

b∈M(X)

Pab(t)(b− a) ≈ t
∑

b∈M(X)

Qab(b− a).

Definition 2.2. For a density dependent family of interacting particle CTMCs over particle state space Z,
with rate of change function f : M(Z) → R defined in (1), the mean field model is defined as

d

dt
x(t) = f(x(t)), x(t) ∈ D ⊆ M(Z). (2)

Example 2.3 (SIS epidemic model). We can write the normalized generator matrix for SIS epidemic
model as

qab =

{
a0α+ a0a1β, (b− a) = 1

N (e1 − e0),

a1, (b− a) = 1
N (e0 − e1).

In this case, we can write the rate change function f : M(Z) → R as

f(a) = (a0α− a1(1− a0β))(−e0 + e1).

Since a0 + a1 = 1, the mean field model can be written as

d

dt
a0(t) = −a0α− a0(1− a0)β + (1− a0).

The stationary point of this ODE is the solution to the equation a20β − a0(α+ β + 1) + 1 = 0, which is

a∗0 =
1 + α+ β

2β
−

√(1 + α+ β

2β

)2

− 1

β
.
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Example 2.4 (Random multiple access). We can write the normalized generator matrix for random
multiple access as

qab =

{
⟨c, a⟩ − czaz, (b− a) = 1

N (ez+1 − ez),

czaz, (b− a) = 1
N (e0 − ez).

In this case, we can write the rate change function f : M(Z) → R as

f(a) =

r−1∑
z=0

(⟨c, a⟩ − czaz)(ez+1 − ez) +

r−1∑
z=1

czaz(e0 − ez) + ⟨c, a⟩ (e0 − er) =

r−1∑
z=0

czaz(e0 − ez+1).

Since a0 +
∑r

z=1 az = 1, the mean field model for z ∈ [r] can be written as

d

dt
az(t) = −cz−1az−1(t).

Example 2.5 (Power-of-d choices). We can write the normalized generator matrix for random mul-
tiple access as

qbc =

λ
(
(Nbk−1

d )−(Nbk
d )

(Nd)

)
, (c− b) = 1

N ek,

bk − bk+1, (c− b) = − 1
N ek.

In this case, the rate of change of complementary distributions f , is given by

f(b) =
∑
k∈N

ek(λ(b
d
k−1 − bdk)− (bk − bk+1)).

Recall that b0 = 1, and the mean field model can be written for all k ∈ N as

d

dt
bk(t) = λ(bdk−1 − bdk)− (bk − bk+1). (3)

There is a unique stationary point of this ODE (3) with
∑

k∈Z+
bk < ∞ given by b∗k = λ

dk−1
d−1 for all

k ∈ Z+. We observe that b∗1 = λ the mean load of the system.
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