Lecture-09: Kurtz's theorem: preliminaries

1 **Preliminaries**

Assumption 1.1. Consider a density-dependent family of CTMCs $((X^N : \Omega \to (\mathbb{Z}^N)^{\mathbb{R}}_+) : N \in \mathbb{N})$. For each N, state $x \in \mathbb{Z}^N$, empirical distribution of states $a(x) \in \mathcal{M}(\mathbb{Z})$, and $z, w \in \mathbb{Z}$, the transition rate $Q_{z,w}^{X_n^N}: \mathcal{M}(\mathcal{Z}) \to \mathbb{R}$ for a single particle *n* is Lipschitz continuous in the empirical distribution.

Proposition 1.2. If Assumption 1.1 holds, then the following statements are true.

- 1. The maximum transition rate $\bar{Q} \triangleq \max \left\{ Q_{zw}^{X_n^N}(a) : z, w \in \mathbb{Z}, a \in \mathcal{M}(\mathbb{Z}) \right\}$ is finite. 2. The rate change function $f : \mathcal{M}(\mathbb{Z}) \to \mathbb{R}^{\mathbb{Z}}$ in Mckean-Vlasov ODE is Lipschitz continuous.
- 3. Mckean-Vlasov ODE is well-posed.

Proof. From hypothesis, we have $\left|Q_{zw}^{X_n^n}(b) - Q_{zw}^{X_n^N}(a)\right| \leq M \|b - a\|_{\mathrm{TV}}$ for all $a, b \in \mathcal{M}_N(\mathcal{Z})$ and some finite $M \in \mathbb{R}_+.$

1. Fix $a, b \in \mathcal{M}_N(\mathcal{Z})$, then we get

$$\left| Q_{zw}^{X^{n}}(b) \right| \leq \left| Q_{zw}^{X_{n}^{N}}(a) \right| + \left| Q_{zw}^{X_{n}^{N}}(b) - Q_{zw}^{X_{n}^{N}}(a) \right| \leq \left| Q_{zw}^{X_{n}^{N}}(a) \right| + M \left\| b - a \right\|.$$

The result follows from finiteness of \mathcal{Z} and of the norm of difference ||b - a|| for all $a, b \in \mathcal{M}(\mathcal{Z})$.

2. We can write the generator matrix for empirical distribution for transitioning states $b, c \in \mathcal{M}_N(\mathcal{Z})$ such that $N(c-b) = -e_z + e_w$, as

$$Q_{b,c}^{A^{N}} = \sum_{n=1}^{N} \sum_{z \in \mathcal{Z}} \mathbb{1}_{\{X_{n}^{N} = z\}} \sum_{w \neq z} \mathbb{1}_{\{N(c-b) = e_{w} - e_{z}\}} Q_{zw}^{X_{n}^{N}}(b) = \sum_{z \in \mathcal{Z}} Nb_{z} \sum_{w \neq z} \mathbb{1}_{\{N(c-b) = e_{w} - e_{z}\}} Q_{zw}^{X_{1}^{N}}(b).$$

Substituting this expression in the definition of $f(b) = \sum_{c \in \mathcal{M}_N(\mathcal{Z})} Q_{b,c}^{A^N}(c-b)$, we obtain

$$f(b) = \sum_{c \in \mathcal{M}_N(\mathcal{Z})} \sum_{z \in \mathcal{Z}} Nb_z \sum_{w \neq z} \mathbb{1}_{\{N(c-b) = e_w - e_z\}} Q_{z,w}^{X_1^N}(b) \frac{1}{N} (e_w - e_z) = \sum_{z \in \mathcal{Z}} b_z \sum_{w \neq z} Q_{z,w}^{X_1^N}(b) (e_w - e_z).$$

Thus, we can write the difference between rate functions evaluated at two different distributions as

$$f(b) - f(a) = \sum_{z \in \mathcal{Z}} b_z \sum_{w \neq z} Q_{z,w}^{X_1^N}(b)(e_w - e_z) - \sum_{z \in \mathcal{Z}} a_z \sum_{w \neq z} Q_{z,w}^{X_1^N}(a)(e_w - e_z).$$

Since $Q_{z,w}^{X_1^N}(b) - Q_{z,w}^{X_1^N}(a) \leq M \|b - a\|_{\text{TV}}$ and $\bar{Q} = \max_{z,w,a} Q_{z,w}^{X_1^N}(a)$, we get

$$\begin{split} f(b) - f(a) &\leq M \| b - a \|_{\mathrm{TV}} \sum_{z \in \mathcal{Z}} b_z \sum_{w \neq z} (e_w + e_z) + \sum_{z \in \mathcal{Z}} (b_z - a_z) \sum_{w \neq z} Q_{z,w}^{X_1^N}(a) (e_w - e_z) \\ &\leq M \| b - a \|_{\mathrm{TV}} \left(\sum_{w \in \mathcal{Z}} e_w + (|\mathcal{Z}| - 1)b \right) + \bar{Q} \sum_{z \in \mathcal{Z}} e_z |b_z - a_z| \left(|\mathcal{Z}| - 1 \right) + \bar{Q} \sum_{z \in \mathcal{Z}} |b_z - a_z| \sum_{w \in \mathcal{Z}} e_w \\ &\leq (M + \bar{Q}) |\mathcal{Z}| \| b - a \|_{\mathrm{TV}} \sum_{z \in \mathcal{Z}} e_z. \end{split}$$

3. Mckean-Vlasov ODE is well-posed.

Lemma 1.3. Consider a homogeneous Poisson counting process $\bar{N} : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ with unit rate adapted to its natural filtration \mathcal{F}_{\bullet} , and define $\bar{N} : \Omega \to \mathbb{R}^{\mathbb{R}_+}$ as $\bar{N}_t \triangleq N_t - t$ for all $t \in \mathbb{R}_+$. Then \bar{N} is martingale adapted to \mathcal{F}_{\bullet} .

Proof. We check the three conditions for \overline{N} to be a martingale adapted to \mathcal{F}_{\bullet} .

- 1. We observe that $\mathbb{E}|N_t t| \leq \mathbb{E}N_t + t < \infty$.
- 2. Since $\sigma(N_t) \subseteq \mathcal{F}_t$, it follows that $\sigma(\bar{N}_t) \subseteq \mathcal{F}_t$.
- 3. We can write $N_t t = N_t N_s + N_s t$. Let s < t. From the increment independent property of N and the fact that $\sigma(N_s) \subseteq \mathcal{F}_s$, we observe $\mathbb{E}[N_t t \mid \mathcal{F}_s] = \mathbb{E}[N_t N_s] + N_s t$. Further, since N is unit rate Poisson counting process, it follows that $\mathbb{E}[N_t N_s] = t s$. Therefore, we have $\mathbb{E}[N_t t \mid \mathcal{F}_s] = N_s s$ for all s < t.

Lemma 1.4. Consider a homogeneous Poisson counting process $N : \Omega \to \mathbb{Z}_+^{\mathbb{R}_+}$ with unit rate adapted to its natural filtration \mathfrak{F}_{\bullet} and $\theta > 0$. We define $Y, Z : \Omega \to \mathbb{R}_+^{\mathbb{R}_+}$ as $Y_t \triangleq e^{\theta(N_t - t)} = 1/Z_t$ for all $t \in \mathbb{R}_+$. Then Y, Z are submartingales adapted to \mathfrak{F}_{\bullet} .

Proof. From Lemma 1.3, we know that centered Poisson counting process \overline{N} is a martingale adapted to \mathcal{F}_{\bullet} . Further, we observe that functions $x \mapsto e^{\theta x}$ and $x \mapsto e^{-\theta x}$ are convex for $\theta > 0$. In addition, we have

$$\mathbb{E}\left|e^{\theta(N_t-t)}\right| = \mathbb{E}e^{\theta(N_t-t)} = e^{t(e^{\theta}-1-\theta)} < \infty, \qquad \mathbb{E}\left|e^{-\theta(N_t-t)}\right| = \mathbb{E}e^{-\theta(N_t-t)} = e^{t(e^{-\theta}-1+\theta)} < \infty.$$

It follows that Y, Z are submartingales adapted to \mathcal{F}_{\bullet} .

Lemma 1.5. Consider a submartingale $X : \Omega \to \mathbb{R}^{\mathbb{N}}$ and a stopping time $\tau : \Omega \to \mathbb{N}$ adapted to filtration \mathcal{F}_{\bullet} . If $\tau \leq n$ almost surely, then $\mathbb{E}X_1 \leq \mathbb{E}X_{\tau} \leq \mathbb{E}X_n$.

Proof. From the fact that X is a submartingale and τ is a stopping time, both adapted to \mathcal{F}_{\bullet} , we get

$$\mathbb{E}[X_n \mathbb{1}_{\{\tau=k\}} \mid \mathcal{F}_k] = \mathbb{1}_{\{\tau=k\}} \mathbb{E}[X_n \mid \mathcal{F}_k] \ge X_\tau \mathbb{1}_{\{\tau=k\}}.$$

Summing over $k \in [n]$, then taking expectation on both sides, it follows from the linearity and monotonicity preserving property of expectation that $\mathbb{E}X_n \sum_{k=1}^n \mathbb{1}_{\{\tau=k\}} \ge \mathbb{E}\sum_{k=1}^n X_\tau \mathbb{1}_{\{\tau=k\}}$. Since $\tau \le n$ almost surely, we have $X_\tau = \sum_{k=1}^n X_\tau \mathbb{1}_{\{\tau=k\}}$ and $X_n = X_n \sum_{k=1}^n \mathbb{1}_{\{\tau=k\}}$ almost surely. \Box

Lemma 1.6 (Doob). For a submartingale $X : \Omega \to \mathbb{R}^{\mathbb{N}}_+$ adapted to a filtration \mathcal{F}_{\bullet} , $P\left\{\max_{i \in [n]} X_i > x\right\} \leq \frac{\mathbb{E}X_n}{x}$ for all x > 0.

Proof. We define a random time $\tau_x \triangleq \inf \{i \in \mathbb{N} : X_i > x\}$ and $\tau \triangleq \tau_x \wedge n$. It follows that τ is a stopping time adapted to \mathcal{F}_{\bullet} and $\tau < n$ almost surely. We observe that $\{\max_{i \in [n]} X_i > x\} = \bigcup_{i \in [n]} \{X_i > x\} = \{X_\tau > x\}$. From Markov inequality for non-negative random variables, we have $P\{X_\tau > x\} \leq \frac{\mathbb{E}X_\tau}{x}$. The result follows from Lemma 1.5.

Lemma 1.7 (Doob). For a submartingale $X : \Omega \to \mathbb{R}^{\mathbb{R}_+}_+$ adapted to a filtration \mathcal{F}_{\bullet} , $P\left\{\sup_{t \in [0,T]} X_t > x\right\} \leq \frac{\mathbb{E}X_T}{x}$ for all x > 0.

Corollary 1.8. For a submartingale $X : \Omega \to \mathbb{R}^{\mathbb{R}_+}$ adapted to a filtration \mathcal{F}_{\bullet} , $P\left\{\sup_{t \in [0,T]} X_t > x\right\} \leq \frac{\mathbb{E}(X_T \vee 0)}{x}$ for all x > 0.

Proof. The function $f : \mathbb{R} \to \mathbb{R}_+$ defined as $f(x) \triangleq x \lor 0$ is non-negative and convex and hence $Y : \Omega \to \mathbb{R}_+^{\mathbb{R}_+}$ defined as $Y_t \triangleq f(X_t)$ for all $t \in \mathbb{R}_+$, is a sub-martingale adapted to \mathcal{F}_{\bullet} . The result follows from Lemma 1.7 and the fact that $\left\{\sup_{t \in [0,T]} X_t > x\right\} = \left\{\sup_{t \in [0,T]} Y_t > x\right\}$ for all x > 0.

Definition 1.9. We define $h: [-1, \infty) \to \mathbb{R}_+$ as $h(t) \triangleq (1+t) \ln(1+t) - t$ for all $t \ge -1$.

Remark 1. The function h defined in Definition 1.9 is positive and increasing for t > 0 and $\lim_{t\to 0} h(t) = 0$. Further, we observe that $h(-t) \ge h(t)$ for $t \in [0, 1]$.

Lemma 1.10. Consider a homogeneous Poisson counting process $N : \Omega \to \mathbb{Z}_{+}^{\mathbb{R}_{+}}$ with unit rate. Then for any $\epsilon, T > 0$, we have $P\left\{\sup_{t \in [0,T]} |N_t - t| > \epsilon\right\} \leq 2e^{-Th(\frac{\epsilon}{T})}$.

Proof. From the union bound applied to event $\left\{\sup_{t\in[0,T]}|N_t-t|>\epsilon\right\}$, we obtain

$$P\left\{\sup_{t\in[0,T]}|N_t-t|>\epsilon\right\}\leqslant P\left\{\sup_{t\in[0,T]}e^{\theta(N_t-t)}>e^{\theta\epsilon}\right\}+P\left\{\sup_{t\in[0,T]}e^{-\theta(N_t-t)}>e^{\theta\epsilon}\right\}.$$

For the Poisson counting process N, consider the submartingales Y, Z defined in Lemma 1.4 adapted to the natural filtration \mathcal{F}_{\bullet} of N. From Doob's inequality of Lemma 1.7, we observe that

$$P\left\{\sup_{t\in[0,T]}Y_t > e^{\theta\epsilon}\right\} \leqslant e^{-\theta\epsilon}\mathbb{E}Y_T, \qquad P\left\{\sup_{t\in[0,T]}Z_t > e^{\theta\epsilon}\right\} \leqslant e^{-\theta\epsilon}\mathbb{E}Z_T.$$

From the moment generating function for a Poisson counting process with unit rate, we get

$$\mathbb{E}Y_T = \mathbb{E}e^{\theta(N_T - T)} = e^{T(e^{\theta} - 1 - \theta)}, \qquad \qquad \mathbb{E}Z_T = \mathbb{E}e^{-\theta(N_T - T)} = e^{T(e^{-\theta} - 1 + \theta)}.$$

We observe that $e^{-\theta\epsilon}\mathbb{E}Y_T = \exp(-\theta\epsilon + T(e^{\theta} - 1 - \theta))$ is minimized at $\theta^* = \ln(\frac{\epsilon}{T} + 1) > 0$. For this value of θ^* , we have

$$e^{-\theta^*\epsilon} \mathbb{E}Y_T(\theta^*) = \exp(-\epsilon \ln(\frac{\epsilon}{T} + 1) + T(\frac{\epsilon}{T} - \ln(\frac{\epsilon}{T} + 1))) = e^{-Th(\frac{\epsilon}{T})}$$

Similarly, $e^{-\theta \epsilon} \mathbb{E} Z_T = \exp(-\theta \epsilon + T(e^{-\theta} - 1 + \theta))$ is minimized at $\theta^{**} = -\ln(1 - \frac{\epsilon}{T}) > 0$. For this value of θ^{**} , we have

$$e^{-\theta^{**}\epsilon} \mathbb{E}Y_T(\theta^{**}) = \exp(\epsilon \ln(1-\frac{\epsilon}{T}) + T(-\frac{\epsilon}{T} - \ln(1-\frac{\epsilon}{T}))) = e^{-Th(-\frac{\epsilon}{T})}$$

Since $h(-\frac{\epsilon}{T}) \ge h(\frac{\epsilon}{T})$ for $\epsilon \le T$, the result follows.

Definition 1.11. For a rate function $\lambda : \mathbb{R}_+ \to \mathbb{R}_+$, we can define $\Lambda : \mathbb{R}_+ \to \mathbb{R}_+$ as $\Lambda_t \triangleq \int_0^s \lambda(s) ds$ for all $t \in \mathbb{R}_+$. We can define the extension $\Lambda : \mathcal{B}(\mathbb{R}_+) \to \mathbb{R}_+$ as $\Lambda(B) = \int_{s \in B} \lambda(s) ds$ for all Borel sets $B \in \mathcal{B}(\mathbb{R}_+)$.

Lemma 1.12 (Time change). Let $N : \Omega \to \mathbb{Z}_{+}^{\mathbb{R}_{+}}$ be a homogeneous Poisson counting process with unit rate, and $\Lambda : \mathcal{B}(\mathbb{R}_{+}) \to \mathbb{R}_{+}$ be a measure with rate $\lambda : \mathbb{R}_{+} \to \mathbb{R}_{+}$. The counting process $M : \Omega \to \mathbb{Z}_{+}^{\mathbb{R}_{+}}$ defined as $M_{t} \triangleq N_{\Lambda_{t}}$ for all $t \in \mathbb{R}_{+}$ is non-homogeneous Poisson with instantaneous rate λ .

Proof. We denote the natural filtration for N and M as \mathcal{F}_{\bullet} and \mathcal{G}_{\bullet} respectively. From the independent increment property of N, we obtain

$$\mathbb{E}[M_t - M_s \mid \mathcal{G}_s] = \mathbb{E}[N_{\Lambda_t} - N_{\Lambda_s} \mid \mathcal{F}_{\Lambda_s}] = \mathbb{E}[N_{\Lambda_t} - N_{\Lambda_s}] = \mathbb{E}[M_t - M_s].$$

It follows that M has independent increment property. Further with mean number of points in (s, t] under M is given by measure $\Lambda(s, t]$.