Lecture-09: Kurtz’s theorem: preliminaries

1 Preliminaries

Assumption 1.1. Consider a density-dependent family of CTMCs ((XV : @ — (ZV)}) : N € N). For

each N, state z € Z, empirical distribution of states a(z) € M(Z), and z,w € Z, the transition rate
N
fw : M(Z) — R for a single particle n is Lipschitz continuous in the empirical distribution.

Proposition 1.2. If Assumption[I.1] holds, then the following statements are true.
— N
1. The mazimum transition rate Q = max {qu’} (a):z,w € Z,a € M(Z)} is finite.

2. The rate change function f : M(Z) — R* in Mckean-Vlasov ODE is Lipschitz continuous.
3. Mckean-Viasov ODE is well-posed.

Proof. From hypothesis, we have ’wan (b) — waj'v (a)‘ < M ||b — al|py for all a,b € My(Z) and some finite
MeR,.
1. Fix a,b € My(Z), then we get

QX o) < |2 (@] + 0% (1) - Q% (@)] < Q% (@] + M |Ib—all.

The result follows from finiteness of Z and of the norm of difference ||b — al| for all a,b € M(Z).
2. We can write the generator matrix for empirical distribution for transitioning states b,c € My (Z)
such that N(c—b) = —e, + ey, as

N
N XN XN
he =22 Loxy—ap D Ln(e-b=e, ey Q=i (B) = ) Nb: D> | Line—ty—e,—e.} Qi (0)-
n=1zeZ w#z z€Z wH#z

Substituting this expression in the definition of f(b) = >_ c 1y (2) Qlﬁ: (¢ — b), we obtain

f(b): Z ZNb Z]]-{N(c b)= ewfez}sz() ew_ Zb ZQ ew_ z)~

cEMN(Z) 2€Z w#z z€Z  w#z

Thus, we can write the difference between rate functions evaluated at two different distributions as

=303 QN M) ew )~ Y0 Y @ (@) (ew — ).

Z€EZ  wH#z z€Z wH#z
. xN xN = xN
Since Q24 (b) — Qzw (a) < M ||b— a||py and Q = max; .q Q= (@), We get

) = fl@) S M b —allpy 3763 (ew+e) + S (b —a2) 3 Qb (a)(ew — e2)

Z2€EZL  w#z z€Z w#z
SMb—allpy (Y ew+ (12 =10+ Q> e b —as (12| - 1)+ QD |b. —az Y ew
weZ z€Z z€Z wezZ
<M +Q) 2] b= allpy Y _ e
z€Z

3. Mckean-Vlasov ODE is well-posed.



Lemma 1.3. Consider a homogeneous Poisson counting process N : £ — ZEJ' with unit rate adapted to its
natural filtration Fo, and define N : Q@ — RE+ as Ny & Ny, —t for allt € Ry. Then N is martingale adapted
to Fo.

Proof. We check the three conditions for N to be a martingale adapted to F,.
1. We observe that E|N; —t| < EN; +t < o0.
2. Since o(Ny) C Fy, it follows that o(N;) C F;.

3. We can write Ny —t = Ny — Ns+ Ng—t. Let s < t. From the increment independent property of N and
the fact that o(Ng) C Fs, we observe E[N; —t | F5] = E[N; — Ng|+ N; —t. Further, since N is unit rate
Poisson counting process, it follows that E[N; — N;] = t — s. Therefore, we have E[N; —t | F5] = Ny —s
for all s < t.

O

Lemma 1.4. Consider a homogeneous Poisson counting process N : Q) — ZE* with unit rate adapted to its

natural filtration Fo and 0 > 0. We define Y, Z : Q — ]RE* as Yy 2 PWNe=t) = 1/7, for all t € R,.. Then
Y, Z are submartingales adapted to F,.

Proof. From Lemma we know that centered Poisson counting process N is a martingale adapted to F,.

Further, we observe that functions x — e* and z — e~%* are convex for # > 0. In addition, we have
E ‘eé(Nt—t) — Ref(Ne—t) _ pt(e?=1-6) _ o0, E ‘e—e(Nt—t) — R f0WNe—t) _ e =146) _ o
It follows that Y, Z are submartingales adapted to F,. [

Lemma 1.5. Consider a submartingale X : Q — RN and a stopping time 7 : Q — N adapted to filtration
Fe. If T < n almost surely, then EX; < EX, < EX,,.

Proof. From the fact that X is a submartingale and 7 is a stopping time, both adapted to F,, we get
EXnlir—py | Tl = Loy B[ X | Fi] > X1 grmpy

Summing over k € [n], then taking expectation on both sides, it follows from the linearity and monotonicity
preserving property of expectation that EX,, ZZ:1 Loy 2 EZZ:1 X7l gr—py. Since 7 < n almost surely,
we have X, =370 | X 1,y and X, = X, 37 Ly,—py almost surely. O

Lemma 1.6 (Doob). For a submartingale X : Q — le, adapted to a filtration F,, P {maxie[n] X; > x} <
% for all x > 0.

Proof. We define a random time 7, = inf {i € N: X; > z} and 7 = 7, An. It follows that 7 is a stopping time
adapted to F, and 7 < n almost surely. We observe that {max;e(n Xi > x} = Ujep {Xi > 2} = {X; >z}
From Markov inequality for non-negative random variables, we have P {X, > =} < % The result follows
from Lemma [L5l O

Lemma 1.7 (Doob). For a submartingale X : Q — REJ' adapted to a filtration Fo, P {SUPte[o,T] Xy > x} <

% for all x > 0.

Corollary 1.8. For a submartingale X : Q — R®+ adapted to a filtration T, P{SUPte[o,T] Xy > x} <

M for all x > 0.

Proof. The function f : R — R, defined as f(z) = 2V 0 is non-negative and convex and hence Y : Q — R+
defined as Y; 2 f(X;) for all t € R, is a sub-martingale adapted to F,. The result follows from Lemma

and the fact that {supte[om X > x} = {suptE[O)T] Y, > x} for all z > 0. O

Definition 1.9. We define h : [~1,00) — R as h(t) & (1 +t)In(1 +¢t) — ¢ for all t > —1.



Remark 1. The function h defined in Definition is positive and increasing for ¢ > 0 and lim;_,q h(t) = 0.
Further, we observe that h(—t) > h(t) for t € [0, 1].

Lemma 1.10. Consider a homogeneous Poisson counting process N : 0 — ZEJ’ with unit rate. Then for

any €,T > 0, we have P {supte[O’T] [Ny — t] > 6} < 2e~Th(F),

Proof. From the union bound applied to event {supte[o_’T] [Ny — t] > e}, we obtain

Pq sup |[Ny—t|>ep <Pq sup fWNe=t) 5 et pdogup e 0N 5 e b
te[0,T] te[0,T te[0,T]

For the Poisson counting process N, consider the submartingales Y, Z defined in Lemma adapted to the
natural filtration F, of V. From Doob’s inequality of Lemma we observe that

P< sup Y;: > e¥y < e PEYr, P< sup Z; > e < e EZr.
te[0,T) t€[0,77]

From the moment generating function for a Poisson counting process with unit rate, we get

EY; = Eef(Nr—T) _ eT(e‘Lke)7 EZp = Ee—¢(Nr—T) _ eT(e—f’fHe).

We observe that e *“EYy = exp(—0e + T'(e’ — 1 — 6)) is minimized at 6* = In(% + 1) > 0. For this value of
0*, we have

e EYr(0°) = exp(—eln( + 1) + T~ In( + 1) = e T,

Similarly, e *“EZr = exp(—fe + T'(e™? — 1 + 6)) is minimized at 6** = —In(1 — %) > 0. For this value of
0**, we have

e . € € € _ _—Th(—%)
EY, = In(l— =)4+7T(—= —In(1— =))) = .
e BV (9) = expleln(l — =)+ T(—7 —In(1 = 7)) = e T

Since h(—+) = h(%) for € < T, the result follows. O

Definition 1.11. For a rate function A : R, — R, we can define A : R, — R, as A, £ fos A(s)ds for all

t € R,. We can define the extension A : B(Ry) — Ry as A(B) = [,_, A\(s)ds for all Borel sets B € B(R).

Lemma 1.12 (Time change). Let N : Q — ZEJ’ be a homogeneous Poisson counting process with unit
rate, and A : B(Ry) — Ry be a measure with rate A : Ry — Ry. The counting process M : Q@ — ZE* defined
as My & Ny, for all t € R is non-homogeneous Poisson with instantaneous rate .

Proof. We denote the natural filtration for N and M as F, and G, respectively. From the independent
increment property of IV, we obtain

E[M; — M; | S5] = E[Na, — N,

Fr.) =E[Na, — Na,] = E[M,; — M,].

It follows that M has independent increment property. Further with mean number of points in (s,t] under
M is given by measure A(s,t]. O
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