
Lecture-09: Kurtz’s theorem: preliminaries

1 Preliminaries

Assumption 1.1. Consider a density-dependent family of CTMCs ((XN : Ω → (ZN )R+) : N ∈ N). For
each N , state x ∈ ZN , empirical distribution of states a(x) ∈ M(Z), and z, w ∈ Z, the transition rate

Q
XN

n
z,w : M(Z) → R for a single particle n is Lipschitz continuous in the empirical distribution.

Proposition 1.2. If Assumption 1.1 holds, then the following statements are true.

1. The maximum transition rate Q̄ ≜ max
{
Q

XN
n

zw (a) : z, w ∈ Z, a ∈ M(Z)
}

is finite.

2. The rate change function f : M(Z) → RZ in Mckean-Vlasov ODE is Lipschitz continuous.
3. Mckean-Vlasov ODE is well-posed.

Proof. From hypothesis, we have
∣∣∣QXn

zw (b)−Q
XN

n
zw (a)

∣∣∣ ⩽ M ∥b− a∥TV for all a, b ∈ MN (Z) and some finite

M ∈ R+.
1. Fix a, b ∈ MN (Z), then we get∣∣∣QXn

zw (b)
∣∣∣ ⩽ ∣∣∣QXN

n
zw (a)

∣∣∣+ ∣∣∣QXN
n

zw (b)−Q
XN

n
zw (a)

∣∣∣ ⩽ ∣∣∣QXN
n

zw (a)
∣∣∣+M ∥b− a∥ .

The result follows from finiteness of Z and of the norm of difference ∥b− a∥ for all a, b ∈ M(Z).
2. We can write the generator matrix for empirical distribution for transitioning states b, c ∈ MN (Z)

such that N(c− b) = −ez + ew, as

QAN

b,c =

N∑
n=1

∑
z∈Z

1{XN
n =z}

∑
w ̸=z

1{N(c−b)=ew−ez}Q
XN

n
zw (b) =

∑
z∈Z

Nbz
∑
w ̸=z

1{N(c−b)=ew−ez}Q
XN

1
zw (b).

Substituting this expression in the definition of f(b) =
∑

c∈MN (Z) Q
AN

b,c (c− b), we obtain

f(b) =
∑

c∈MN (Z)

∑
z∈Z

Nbz
∑
w ̸=z

1{N(c−b)=ew−ez}Q
XN

1
z,w (b)

1

N
(ew − ez) =

∑
z∈Z

bz
∑
w ̸=z

Q
XN

1
z,w (b)(ew − ez).

Thus, we can write the difference between rate functions evaluated at two different distributions as

f(b)− f(a) =
∑
z∈Z

bz
∑
w ̸=z

Q
XN

1
z,w (b)(ew − ez)−

∑
z∈Z

az
∑
w ̸=z

Q
XN

1
z,w (a)(ew − ez).

Since Q
XN

1
z,w (b)−Q

XN
1

z,w (a) ⩽ M ∥b− a∥TV and Q̄ = maxz,w,a Q
XN

1
z,w (a), we get

f(b)− f(a) ⩽ M ∥b− a∥TV

∑
z∈Z

bz
∑
w ̸=z

(ew + ez) +
∑
z∈Z

(bz − az)
∑
w ̸=z

Q
XN

1
z,w (a)(ew − ez)

⩽ M ∥b− a∥TV (
∑
w∈Z

ew + (|Z| − 1)b) + Q̄
∑
z∈Z

ez |bz − az| (|Z| − 1) + Q̄
∑
z∈Z

|bz − az|
∑
w∈Z

ew

⩽ (M + Q̄) |Z| ∥b− a∥TV

∑
z∈Z

ez.

3. Mckean-Vlasov ODE is well-posed.
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Lemma 1.3. Consider a homogeneous Poisson counting process N̄ : Ω → ZR+

+ with unit rate adapted to its

natural filtration F•, and define N̄ : Ω → RR+ as N̄t ≜ Nt − t for all t ∈ R+. Then N̄ is martingale adapted
to F•.

Proof. We check the three conditions for N̄ to be a martingale adapted to F•.

1. We observe that E |Nt − t| ⩽ ENt + t < ∞.

2. Since σ(Nt) ⊆ Ft, it follows that σ(N̄t) ⊆ Ft.

3. We can write Nt− t = Nt−Ns+Ns− t. Let s < t. From the increment independent property of N and
the fact that σ(Ns) ⊆ Fs, we observe E[Nt− t | Fs] = E[Nt−Ns]+Ns− t. Further, since N is unit rate
Poisson counting process, it follows that E[Nt−Ns] = t−s. Therefore, we have E[Nt− t | Fs] = Ns−s
for all s < t.

Lemma 1.4. Consider a homogeneous Poisson counting process N : Ω → ZR+

+ with unit rate adapted to its

natural filtration F• and θ > 0. We define Y,Z : Ω → RR+

+ as Yt ≜ eθ(Nt−t) = 1/Zt for all t ∈ R+. Then
Y,Z are submartingales adapted to F•.

Proof. From Lemma 1.3, we know that centered Poisson counting process N̄ is a martingale adapted to F•.
Further, we observe that functions x 7→ eθx and x 7→ e−θx are convex for θ > 0. In addition, we have

E
∣∣∣eθ(Nt−t)

∣∣∣ = Eeθ(Nt−t) = et(e
θ−1−θ) < ∞, E

∣∣∣e−θ(Nt−t)
∣∣∣ = Ee−θ(Nt−t) = et(e

−θ−1+θ) < ∞.

It follows that Y,Z are submartingales adapted to F•.

Lemma 1.5. Consider a submartingale X : Ω → RN and a stopping time τ : Ω → N adapted to filtration
F•. If τ ⩽ n almost surely, then EX1 ⩽ EXτ ⩽ EXn.

Proof. From the fact that X is a submartingale and τ is a stopping time, both adapted to F•, we get

E[Xn1{τ=k} | Fk] = 1{τ=k}E[Xn | Fk] ⩾ Xτ1{τ=k}.

Summing over k ∈ [n], then taking expectation on both sides, it follows from the linearity and monotonicity
preserving property of expectation that EXn

∑n
k=1 1{τ=k} ⩾ E

∑n
k=1 Xτ1{τ=k}. Since τ ⩽ n almost surely,

we have Xτ =
∑n

k=1 Xτ1{τ=k} and Xn = Xn

∑n
k=1 1{τ=k} almost surely.

Lemma 1.6 (Doob). For a submartingale X : Ω → RN
+ adapted to a filtration F•, P

{
maxi∈[n] Xi > x

}
⩽

EXn

x for all x > 0.

Proof. We define a random time τx ≜ inf {i ∈ N : Xi > x} and τ ≜ τx∧n. It follows that τ is a stopping time
adapted to F• and τ < n almost surely. We observe that

{
maxi∈[n] Xi > x

}
= ∪i∈[n] {Xi > x} = {Xτ > x}.

From Markov inequality for non-negative random variables, we have P {Xτ > x} ⩽ EXτ

x . The result follows
from Lemma 1.5.

Lemma 1.7 (Doob). For a submartingale X : Ω → RR+

+ adapted to a filtration F•, P
{
supt∈[0,T ] Xt > x

}
⩽

EXT

x for all x > 0.

Corollary 1.8. For a submartingale X : Ω → RR+ adapted to a filtration F•, P
{
supt∈[0,T ] Xt > x

}
⩽

E(XT∨0)
x for all x > 0.

Proof. The function f : R → R+ defined as f(x) ≜ x∨0 is non-negative and convex and hence Y : Ω → RR+

+

defined as Yt ≜ f(Xt) for all t ∈ R+, is a sub-martingale adapted to F•. The result follows from Lemma 1.7

and the fact that
{
supt∈[0,T ] Xt > x

}
=

{
supt∈[0,T ] Yt > x

}
for all x > 0.

Definition 1.9. We define h : [−1,∞) → R+ as h(t) ≜ (1 + t) ln(1 + t)− t for all t ⩾ −1.
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Remark 1. The function h defined in Definition 1.9 is positive and increasing for t > 0 and limt→0 h(t) = 0.
Further, we observe that h(−t) ⩾ h(t) for t ∈ [0, 1].

Lemma 1.10. Consider a homogeneous Poisson counting process N : Ω → ZR+

+ with unit rate. Then for

any ϵ, T > 0, we have P
{
supt∈[0,T ] |Nt − t| > ϵ

}
⩽ 2e−Th( ϵ

T ).

Proof. From the union bound applied to event
{
supt∈[0,T ] |Nt − t| > ϵ

}
, we obtain

P

{
sup

t∈[0,T ]

|Nt − t| > ϵ

}
⩽ P

{
sup

t∈[0,T ]

eθ(Nt−t) > eθϵ

}
+ P

{
sup

t∈[0,T ]

e−θ(Nt−t) > eθϵ

}
.

For the Poisson counting process N , consider the submartingales Y, Z defined in Lemma 1.4 adapted to the
natural filtration F• of N . From Doob’s inequality of Lemma 1.7, we observe that

P

{
sup

t∈[0,T ]

Yt > eθϵ

}
⩽ e−θϵEYT , P

{
sup

t∈[0,T ]

Zt > eθϵ

}
⩽ e−θϵEZT .

From the moment generating function for a Poisson counting process with unit rate, we get

EYT = Eeθ(NT−T ) = eT (eθ−1−θ), EZT = Ee−θ(NT−T ) = eT (e−θ−1+θ).

We observe that e−θϵEYT = exp(−θϵ+ T (eθ − 1− θ)) is minimized at θ∗ = ln( ϵ
T + 1) > 0. For this value of

θ∗, we have

e−θ∗ϵEYT (θ
∗) = exp(−ϵ ln(

ϵ

T
+ 1) + T (

ϵ

T
− ln(

ϵ

T
+ 1))) = e−Th( ϵ

T ).

Similarly, e−θϵEZT = exp(−θϵ + T (e−θ − 1 + θ)) is minimized at θ∗∗ = − ln(1 − ϵ
T ) > 0. For this value of

θ∗∗, we have

e−θ∗∗ϵEYT (θ
∗∗) = exp(ϵ ln(1− ϵ

T
) + T (− ϵ

T
− ln(1− ϵ

T
))) = e−Th(− ϵ

T ).

Since h(− ϵ
T ) ⩾ h( ϵ

T ) for ϵ ⩽ T , the result follows.

Definition 1.11. For a rate function λ : R+ → R+, we can define Λ : R+ → R+ as Λt ≜
∫ s

0
λ(s)ds for all

t ∈ R+. We can define the extension Λ : B(R+) → R+ as Λ(B) =
∫
s∈B

λ(s)ds for all Borel sets B ∈ B(R+).

Lemma 1.12 (Time change). Let N : Ω → ZR+

+ be a homogeneous Poisson counting process with unit

rate, and Λ : B(R+) → R+ be a measure with rate λ : R+ → R+. The counting process M : Ω → ZR+

+ defined

as Mt ≜ NΛt
for all t ∈ R+ is non-homogeneous Poisson with instantaneous rate λ.

Proof. We denote the natural filtration for N and M as F• and G• respectively. From the independent
increment property of N , we obtain

E[Mt −Ms | Gs] = E[NΛt −NΛs | FΛs ] = E[NΛt −NΛs ] = E[Mt −Ms].

It follows that M has independent increment property. Further with mean number of points in (s, t] under
M is given by measure Λ(s, t].
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