
Lecture-12: Stein’s method

1 Stein’s method for rate of convergence

Definition 1.1. We define the inner product of x, y ∈ Rd as ⟨x, y⟩ ≜
∑d

i=1 xiyi, and the 2-norm for any

x ∈ Rd as ∥x∥ ≜
√
⟨x, x⟩ =

√∑d
i=1 x

2
i .

Definition 1.2. Any vector in Rd will be denoted by its row vector, and hence the inner product for any
two vectors x, y ∈ Rd can be written as ⟨x, y⟩ = xyT = yxT .

Definition 1.3. For any differentiable function g : Rd → R, we denote its gradient by ∇g : Rd → Rd

and define it in terms of unit row vectors (ei : i ∈ [d]), as ∇g(x) ≜
∑d

i=1 ei
∂g(x)
∂xi

. The inner product of

∇g : Rd → Rd and y ∈ Rd is given by

⟨∇g(x), y⟩ =
d∑

i=1

∂g(x)

∂xi
yi = ∇g(x)yT = y(∇g(x))T .

For any function f : Rd → Rd, we denote its gradient in terms of unit row vectors (ei : i ∈ [d]), by matrix

∇f(x) ≜
d∑

i,j=1

eTj
∂fi(x)

∂xj
ei =

d∑
i=1

(∇fi(x))
T ei.

For a vector y ∈ Rd and function f : Rd → Rd, we can write the row vector

d∑
i=1

(

d∑
j=1

∂fi(x)

∂xj
yj)ei =

d∑
i=1

⟨∇fi(x), y⟩ ei = y

d∑
i=1

(∇fi(x))
T ei = y∇f(x).

For a function f : Rd → Rd and x : R+ → Rd, we can derivative of the norm

d

dt
∥f(x(t))∥2 = 2

d∑
i,j=1

fi(x)
∂fi(x)

∂xj
ẋj(t) =

〈
f(x),

d∑
i=1

ei ⟨∇fi(x), ẋ⟩

〉
= ⟨f(x), ẋ∇f(x)⟩ = f(x)(ẋ∇f(x))T .

Definition 1.4 (Locally exponentially stable). A mean-field model ȧ = f(a) is said to be locally
exponentially stable if there exist positive constants ϵ, α, κ > 0, such that if initial condition ∥a(0)∥ ⩽ ϵ,
then

∥a(t)− a∗∥ ⩽ κ ∥a(0)∥ e−αt.

Definition 1.5 (Poisson). For a mean field model ȧ = f(a) where a ∈ M(Z) and a∗ is a rest point and
d ≜ |Z|, we define g : M(Z) → R be the solution to the Poisson equation

⟨∇g(a), ȧ⟩ = ⟨∇g(a), f(a)⟩ = ∥Φt(a)− a∗∥2 . (1)

Remark 1. We note that ∂g(a)
∂t = 0, and hence the total derivative of g with respect to t is given by

dg(a)

dt
= ⟨∇g(a), ȧ⟩+ ∂g(a)

∂t
= ∥Φt(a)− a∗∥2 .

Since a(∞) = a∗, it follows that the solution to the Poisson equation is given by g(a) ≜ −
∫
t∈R+

∥Φt(a)− a∗∥2 dt,
when the integral exists and is finite. The integral is finite when the mean-field model is asymptotically stable
and locally exponentially stable. Note that −g(a) can be viewed as the cumulative square deviation of the
system state from the equilibrium point when the initial condition is a.
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Remark 2. We define h : R+ ×M(Z)×M(Z) → Rd as h(t, a, b) ≜ (b− a)∇Φt(a). Since Φt(a), a
∗ ∈ M(Z),

we have ∥Φt(a)− a∗∥∞ ⩽ 1. From Hölder’s inequality for inner product |⟨a, b⟩| ⩽ ∥a∥∞ ∥b∥1, we obtain∫
t∈R+

2 ⟨(Φt(a)− a∗), (b− a)∇Φt(a)⟩ dt ⩽ 2

∫
t∈R+

∥h(t, a, b)∥1 dt ⩽ 2
√
d

∫
t∈R+

∥h(t, a, b)∥2 dt ⩽
2c
√
d

σ
.

We will show the last inequality later. Recall that∇Φt(a) =
∑d

i=1 ei(∇Φt(a)i)
T , and hence

〈
b, (∇Φt(a))

T
〉
=∑d

i=1 bi∇Φt(a)i. Since the integral is bounded, we can exchange differentiation and integration to write

∇g(a) = −
∫
t∈R+

2

d∑
i=1

(Φt(a)i − a∗i )∇Φt(a)idt = −
∫
t∈R+

2(Φt(a)− a∗)(∇Φt(a))
T dt.

Remark 3. Recall that QAN

is the generator matrix for the empirical distribution of interacting-particle
CTMC with N particles. If AN is irreducible, then it is positive recurrent with equilibrium distribution

πAN (∞) such that πAN (∞)QAN

= 0. If the initial distribution πAN (0) = πAN (∞), then πAN (t) = πAN (∞) for
all t ∈ R+. In particular, we have

EπAN (∞)

∑
b:b̸=a

QAN

AN (∞),b(g(b)− g(AN (∞))) =
∑

a,b∈MN (Z)

πAN (∞)
a QAN

a,b (g(b)− g(a)) = 0. (2)

Substituting random variable AN (∞) into the Poisson equation, taking expectation with respect to stationary

distribution πAN (∞), and recalling that πAN (∞) remains invariant under map Φt for all t ∈ R+, we obtain

EπAN (∞)

〈
∇g(AN (∞)), f(AN (∞))

〉
= EπAN (∞)

∥∥Φt(A
N (∞))− a∗

∥∥2 = EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 . (3)

Subtracting (2) to the left hand side, adding and subtracting f(AN (∞)) =
∑

b:b ̸=AN (∞) Q
AN

AN (∞),b(b−AN (∞))

inside the inner product in the left hand side term of (3), and using the fact that ȧ = f(a), we obtain

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = EπAN (∞)

[〈
∇g(AN (∞)),

(
f(AN (∞))−

∑
b:b ̸=AN (∞)

QAN

AN (∞),b(b−AN (∞))
)〉

−
∑

b:b ̸=AN (∞)

QAN

AN (∞),b

(
g(b)− g(AN (∞))−

〈
∇g(AN (∞)), (b−AN (∞))

〉 )]
. (4)

From the equality above, it appears that limN→∞ E
∥∥AN (∞)− a∗

∥∥2 = 0, if the following are true.

1. Solution g to the Poisson equation has a bounded gradient, i.e. ∥∇g(a)∥ is bounded by a constant
independent of N .

2. Generator f converges, i.e. limN→∞ EπAN (∞)

∥∥∥f(AN (∞))−
∑

b:b ̸=AN (∞) Q
AN

AN (∞),b(b−AN (∞))
∥∥∥ = 0.

3. The CTMC AN has bounded transition-rates, i.e. 1
NEπAN (∞)

∑
b:b̸=AN (∞) Q

AN

AN (∞),b is bounded.

4. The first-order approximation error for g is diminishing, i.e. ∥g(b)− g(a)− ⟨∇g(a), (b− a)⟩∥ = O( 1
N2 ).

Note that g(a) + ⟨∇g(a), (b− a)⟩ is the first-order Taylor approximation of g(b).

For many CTMCs and the associated mean-field models, the first three conditions mentioned above can
be easily verified. In the following theorem, we will prove that the last condition holds when the mean-
field model is globally asymptotically stable and locally exponentially stable (see inequality (13)), and then
establish the rate of convergence based on that.

Theorem 1.6. The empirical distribution processes of the density-dependent family of CTMCs ((XN : Ω →
ZN ) : N ∈ N), converge to the equilibrium point a∗ of the mean-field model in the mean-square sense with
rate 1

N , i.e.,

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = O

( 1

N

)
,

when the following conditions hold.
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Condition 1. Bounded transition-rate. There exists a constant c > 0 independent of N such that

EπAN (∞)

∑
b:b ̸=AN (∞)

QAN

AN (∞),b ⩽ Nc.

Condition 2. Bounded state transition. There exists a constant c̃ independent of N such that N ∥b− a∥ ⩽
c̃ for any a, b ∈ MN (Z) such that QAN

a,b ̸= 0.

Condition 3. Perfect mean-field model. The mean-field model is given by f(a) =
∑

b:b̸=a Q
AN

a,b (b− a) for
all a ∈ M(Z).

Condition 4. Existence of partial derivatives. The first order partial derivatives ∂fw
∂az

exist and are
Lipschitz for all w, z ∈ Z.

Condition 5. Stability. The mean-field model is globally asymptotically stable and is locally exponentially
stable.

Proof. We will first show the theorem assuming that the system is globally exponentially stable, and then
extend it to the case of global asymptotically stable and local exponentially stable case. Under perfect
mean-field model condition, we can rewrite (4) as

EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = EπAN (∞)

[
−

∑
b:b ̸=AN (∞)

QAN

AN (∞),b

(
g(b)−g(AN (∞))−

〈
∇g(AN (∞)), (b−AN (∞))

〉 )]
.

Recall that map g : M(Z) → R is the solution to Poisson equation (1), and thus we can write

−
(
g(b)−g(a)−⟨∇g(a), (b− a))⟩

)
=

∫
t∈R+

(
∥Φt(b)− a∗∥2−∥Φt(a)− a∗∥2−2

〈
(Φt(a)− a∗)∇Φt(a)

T , (b− a)
〉 )

dt.

We define the error function e : R+ ×M(Z)×M(Z) → Rd for each t ∈ R+, a, b ∈ M(Z), as

e(t, a, b) ≜ Φt(b)− Φt(a)− (b− a)∇Φt(a).

With this definition, we can write

∥Φt(b)− a∗∥2 − ∥Φt(a)− a∗∥2 − 2
〈
(Φt(a)− a∗)∇Φt(a)

T , (b− a)
〉

= ∥e(t, a, b) + Φt(a)− a∗ + (b− a)∇Φt(a)∥2 − ∥Φt(a)− a∗∥2 − 2
〈
(Φt(a)− a∗)∇Φt(a)

T , (b− a)
〉

= ∥e(t, a, b)∥2 + ∥(b− a)∇Φt(a)∥2 + 2 ⟨e(t, a, b),Φt(a)− a∗ + (b− a)∇Φt(a)⟩ .

We will show that ∥e(t, a, b)∥2 = O( 1
N2 ), from the bounded state transition condition we have ∥b− a∥ ⩽ c̃

N ,

and we will show that N ∥(b− a)∇Φt(a)∥2 ⩽ c independent of N and t. Therefore, there exists Ñ ∈ N such

that for all N ⩾ Ñ ,
∥e(t, a, b) + 2(Φt(a)− a∗) + 2(b− a)∇Φt(a)∥ ⩽ 3.

Substituting this, we can upper bound

−(g(b)− g(a)− ⟨∇g(a), (b− a))⟩) ⩽ 3

∫
t∈R+

∥e(t, a, b)∥ dt+ 1

N2

∫
t∈R+

∥N(b− a)∇Φt(a)∥2 dt.

We will show that
∫
t∈R+

∥e(t, a, b)∥ dt = O( 1
N2 ) and

∫
t∈R+

∥N(b− a)∇Φt(a)∥2 dt = Θ(1), to obtain that the

RHS of the above equation is of order O( 1
N2 ). Together with bounded transition rate condition, we conclude

that EπAN (∞)

∥∥AN (∞)− a∗
∥∥2 = O( 1

N ).
Consider the case that the mean-field model is not globally exponentially stable, but is globally asymp-

totically stable and locally exponentially stable. Recall that a(t) ∈ M(Z) ⊆ [0, 1]d is compact. From the
definition of global asymptotic stability, given any ϵ > 0, there exists a finite time tϵ such that ∥Φt(a)∥ ⩽ ϵ
for all t ⩾ tϵ. We observe that ∥e(tϵ, a, b)∥1 dt = O( 1

N2 ) and writing the integration
∫
t∈R+

=
∫
t⩽tϵ

+
∫
t>tϵ

,

we get the result.
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Proposition 1.7. A dynamical system has an exponentially stable equilibrium point if and only if the
linearized system at the equilibrium is exponentially stable.

Remark 4. The first four conditions are straightforward to verify, however showing the stability condition
requires work. The global asymptotical stability in general is studied using the Lyapunov theorem. The
local exponential stability can be verified by computing the eigenvalues of the state matrix of the linearized
mean-field model at equilibrium. For given parameters of the mean-field model, one can verify the local
exponential stability.

Remark 5. If the mean-field model is unstable but the perfect mean-field model assumption holds, then
Kurtz’s theorem indicates that the sample paths of the CTMCs converge to the trajectory of the mean-field
model for any finite time interval, which implies that the CTMCs are unstable as well.

Remark 6. Convergence to the mean-field model in Theorem 1.6 requires a perfect mean-field model and
bounded state transitions, both of which can be relaxed.
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