
Lecture-16: The thermodynamic limit

1 Fluctuation-dissipation relations

Until now, we have considered systems in which the energy function is purely a function of the state. Now,
we consider systems in which the energy function is parametrized by a real scalar λ and hence is of the form
Eλ(x), for any configuration x ∈ X.

Definition 1.1. We denote the partition function for parametrized energy function Eλ : X → R by Zλ :
R+ → R+ defined for all β ∈ R+ as

Zλ(β) ≜
∑
x∈X

e−βEλ(x).

Boltzmann distribution for state x with parameter λ is denoted as

µβ,λ(x) ≜
eβEλ(x)

Zλ(β)
,

and expected value of an observable O : X → R under Boltzmann distribution µβ,λ as ⟨O⟩λ. For two
observables O,P : X → R, we denote the covariance of O,P under the Boltzmann distribution for parameter
λ as

⟨O;P⟩λ ≜ ⟨OP⟩λ − ⟨O⟩λ ⟨P⟩λ .

Lemma 1.2. Consider an interacting particle system with configuration space X and parametrized energy
function Eλ : X → R being a smooth function of parameter λ ∈ R. Then, the following statements are true
for a fixed parameter λ0 ∈ R.

1. The energy Eλ(x) can be expressed in terms of Eλ0
(x) as

Eλ(x) = Eλ0(x) + (λ− λ0)
∂Eλ(x)

∂λ

∣∣∣∣
λ0

+Θ((λ− λ0)
2). (1)

2. The partition function Zλ(β) can be expressed in terms of partition function Zλ0(β) as

Zλ(β) = Zλ0
(β)
[
1− β(λ− λ0)

〈
∂Eλ(x)

∂λ

∣∣∣∣
λ0

〉
λ0

+Θ((λ− λ0)
2)
]
, (2)

3. Partial derivatives of partition function Zλ(β) and free entropy Φλ(β) evaluated at λ0 are

∂

∂λ
Zλ(β)

∣∣∣∣
λ0

= −βZλ0
(β)

〈
∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

,
∂Φλ(β)

∂λ

∣∣∣∣
λ0

= −β

〈
∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

. (3)

Proof. From the hypothesis, the energy function Eλ is a smooth function of parameter λ.
1. The energy function can be expanded into a Taylor series about a value λ0 to obtain (1).
2. Taking exponential on both sides of equation (1), we can expand the following ratio of partition

functions as

Zλ(β)

Zλ0
(β)

=
1

Zλ0
(β)

∑
x∈X

exp

(
−βEλ0

(x)− β(λ− λ0)
∂Eλ(x)

∂λ

∣∣∣∣
λ0

+Θ((λ− λ0)
2)

)
. (4)
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Using the Taylor’s expansion for the exponential ex = 1 + x+Θ(x2), we obtain

e
−β(λ−λ0)

∂Eλ(x)

∂λ

∣∣∣
λ0 = 1− β(λ− λ0)

∂Eλ(x)

∂λ

∣∣∣∣
λ0

+Θ((λ− λ0)
2). (5)

Substituting equation (5) in equation (4), we obtain the result.
3. Taking partial derivative of partition function Zλ(β) with respect to parameter λ in (2) and evaluating

it at λ0, we get the first result. We can find the partial derivative of free entropy Φλ(β) = logZλ(β)

with respect to the parameter λ evaluated at the value λ0 as ∂Φλ(β)
∂λ

∣∣∣
λ0

= 1
Zλ(β)

∂
∂λZλ(β)

∣∣∣
λ0

.

Theorem 1.3 (Fluctuation-dissipation theorem). For any observable O : X → R,

⟨O⟩λ = ⟨O⟩λ0
− β(λ− λ0)

〈
O;

∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

+Θ((λ− λ0)
2).

Proof. Using equation (1) for expansion of e−βEλ(x) in terms of e−βEλ0
(x) and equation (2) for expansion of

the partition function Zλ(x) in terms of Zλ0(x), we can write the expectation of observable O for system
parameter λ in the neighborhood of λ0 as

⟨O⟩λ =
∑
x∈X

O(x)e−βEλ(x)

Zλ(x)
=
∑
x∈X

O(x)e−βEλ0
(x)

(
1− β(λ− λ0)

∂Eλ(x)
∂λ

∣∣∣
λ0

+Θ((λ− λ0)
2)

)
Zλ0(β)

[
1− β(λ− λ0)

〈
∂Eλ

∂λ

∣∣
λ0

〉
λ0

+Θ((λ− λ0)2)

] .

Using the expansion 1
1−y = 1 + y + y2 + ..., the denominator can be brought to the numerator, to obtain

⟨O⟩λ =
∑
x∈X

µβ,λ0
(x)O(x)

[
1− β(λ− λ0)

∂Eλ(x)

∂λ

∣∣∣∣
λ0

+Θ((λ− λ0)
2)

]
×

[
1 + β(λ− λ0)

〈
∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

+Θ((λ− λ0)
2)

]

=
∑
x∈X

µβ,λ0
(x)

[
O(x)− β(λ− λ0)

(
O(x)

∂Eλ(x)

∂λ

∣∣∣∣
λ0

−O(x)

〈
∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

+Θ((λ− λ0)
2)

)]

= ⟨O⟩λ0
− β(λ− λ0)

[〈
O ∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

− ⟨O⟩λ0

〈
∂Eλ

∂λ

∣∣∣∣
λ0

〉
λ0

]
+Θ((λ− λ0)

2).

Result follows from the definition of covariance under the Boltzmann distribution.

2 The thermodynamic limit

The main purpose of statistical physics is to understand the macroscopic behavior of a large number, N ≫ 1,
of microscopic components (atoms, molecules, etc.) under simple local interactions. For example, in the case
of water in a bottle, the number N of H2O molecules is typically of order 1023, since 18g of water contains
approximately 6× 1023 molecules, and this huge number leads physicists to focus on the N → ∞ limit, also
called the thermodynamic limit.

2.1 The intensive thermodynamic potentials

For large N , the thermodynamic potentials are proportional to N . The intensive thermodynamic po-
tentials f(β), u(β), s(β) are defined as follows.

Definition 2.1 (Intensive thermodynamic potentials). Denoting the thermodynamic potentials for N
particle system as FN (β), UN (β), SN (β) for the free energy, the internal energy, and the canonical entropy
respectively, we can define the free energy density, the energy density, and the entropy density as

f(β) = lim
N→∞

FN (β)

N
, u(β) = lim

N→∞

UN (β)

N
, s(β) = lim

N→∞

SN (β)

N
. (6)
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Remark 1. The partition function ZN (β) for N particles is a sum of exponentials, and hence is smooth and
analytic. It follows that the free energy FN (β) = − 1

β lnZN (β) is also analytic.

Definition 2.2 (Phase transition). We say that a phase transition occurs, whenever the free energy
density f(β) is non-analytic.

Remark 2. Since the free entropy ΦN (β) is convex, then so is the free entripy density ϕ(β), and therefore
the free energy density f(β) = − 1

βϕ(β) is necessarily continuous whenever it exists. The phase transitions
correspond to qualitative changes in the underlying physical system.

Definition 2.3 (Types of singularities). Often, the non-analyticities occur at isolated points say βc.

First-order phase transition. The free energy density is continuous, but its derivative with respect to β
is discontinuous at βc.

Second-order phase transition. The free energy and its first derivative are continuous, but the second
derivative is discontinuous at βc.

2.2 Energy spectrum and Micro-canonincal entropy density

When the number of particles N grows, the volume of the configuration space increases exponentially, i.e.∣∣ZN
∣∣ = |Z|N . We have seen before that the system is likely to be found in lowest-energy configurations with

high probability at low temperatures. From the definition of Boltzmann distribution, it is easy to check that
conditioned on the system to be at certain energy level, it is equally likely to be in any configuration with
equal energy. Therefore, one of the important factor of interest is the number of configurations for any given
energy level. This information is given by the energy spectrum of the system.

Definition 2.4. The set of states with energy in the interval [E,E +∆) is called the energy spectrum of
the N particle system, and denoted by Ω∆(E) ≜

{
x ∈ ZN : E ⩽ E(x) < E +∆

}
. The number of states in

Ω∆(E) is given by N∆(E) ≜ |Ω∆(E)|.

Remark 3. The energy spectrum diverges exponentially in many systems as N → ∞, if the energy is scaled
linearly with N .

Definition 2.5. More precisely, there exists a function s : R → R called the micro-canonical entropy
density, such that given two numbers e and δ > 0,

sup
e′∈[e,e+δ]

s(e′) = lim
N→∞

1

N
logNNδ(Ne). (7)

Definition 2.6. We say that two exponential quantities AN and BN are equal to leading exponential
order and denote this equality by AN

.
=N BN , if limN→∞

1
N log AN

BN
= 0.

Remark 4. Using this notation, we can write the following equality for micro-canonical entropy density

N∆(E)
.
=N eNs(E/N). (8)

The micro-canonical entropy density s(e) conveys a great amount of information about the system, and is
directly related to the intensive thermodynamic potentials through a fundamental relation.

Remark 5. Recall that energy function E : ZN → R, and hence we can divide the energy levels into
N∆ intervals. Then, we can partition the configuration space into configurations with energy level in one

of these durations. Specifically, we can define ΩN∆(Nk∆) ≜
{
x ∈ ZN : k∆ ⩽ E(x)

N < (k + 1)∆
}
. Clearly,

(ΩN∆(Nk∆) : k ∈ Z) partition the configuration space ZN , and each of these partitions have cardinality
|ΩN∆(Nk∆)| = NN∆(Nk∆). Therefore, we can write the partition function as

ZN (β) =
∑

x∈ZN

e−βE(x) =

∞∑
k=−∞

e−βNk∆NN∆(Nk∆)

 1

NN∆(Nk∆)

∑
x∈ΩN∆(Nk∆)

e−βN(
E(x)
N −k∆)

 .
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From equation (8), we get the following equality in leading exponential order NN∆(Nk∆)
.
=N eNs(k∆). If Z

is discrete and ∆ is small enough so that the energy levels are exactly at N∆ intervals, then we can write
the partition function as

Z(β)
.
=N

∞∑
k=−∞

eN(s(k∆)−βk∆).

For continuous energy levels, we can show that ZN (β)
.
=N

∫
eN(s(e)−βe)de, by taking limit of ∆ → 0.

Proposition 2.7. If the micro-canonical entropy density (7) exists for any e and if the limit in equation (7)
is uniform in e, then the free entropy density (6) exists and is given by

ϕ(β) = max
e

(s(e)− βe).

If the maximum of s(e)− βe is unique, then the internal-energy density equals argmax(s(e)− βe).

Proof. From the definition, the free entropy density ϕ(β) can be written as ϕ(β) = limN→∞
1
N lnZN (β).

From the computation of N -particle partition function in Remark 5, we can evaluate this limit for discrete
configuration space as

ϕ(β) = lim
N→∞

1

N

∞∑
k=−∞

eN(s(k∆)−βk∆) = sup
k
[s(k∆)− βk∆] = max

e
[s(e)− βe].

Recall that ϕ(β) = limN→∞
1
N lnZN (β). If e∗ ≜ argmax(s(e)−βe) is unique, then ZN (β)

.
=N eN(s(e∗)−βe∗).

It follows that

lim
N→∞

µN,β(x) = lim
N→∞

1

NN∆(Nk∆)
1{x∈ΩN∆(Nk∆)} = e−Ns(e∗)

1{E(x)=Ne∗}.

It follows that u(β) = limN→∞
1
N ⟨E⟩N = e∗.

Example 2.8 (N identical two-level systems). We consider an N particle system, where the con-
figuration space X = ZN of N particles with identical two-level sets Z = {0, 1}. For any configuration
x ∈ XN , we let xi ∈ Z denote the configuration of particle i ∈ [N ]. As in the previous two-level system
example, for each particle i ∈ [N ]

Ei(xi) = Esingle(xi) ≜ ϵ0(1− xi) + ϵ1xi.

Without any loss of generality, we assume ϵ1 > ϵ0, and define the energy gap as ∆ ≜ ϵ1 − ϵ0. We take
the energy of the N particle system to be the sum of the single-particle energies, i.e.

E(x) ≜
N∑
i=1

Ei(xi) =

N∑
i=1

Esingle(xi) = Nϵ0 +∆

N∑
i=1

xi.

We can next study the energy spectrum for this model. For any configuration x ∈ ZN , we can define
the set of particles in state k ∈ {0, 1} as Sk ≜ {i ∈ [N ] : xi = k} . Clearly, (S0, S1) partitions the set of
particles [N ], and the system energy is given by E(x) = Nϵ0 + |S1|∆. The number of possible subsets
S1 ⊆ [N ] such that |S1| = n is equal to the binomial coefficient

(
N
n

)
. Therefore, we conclude that

E(x) ∈ {Nϵ0 + n∆ : n = 0, . . . , N} and for any energy E = Nϵ0 + n∆, there are
(
N
n

)
configurations

x ∈ ZN such that E(x) = E. This is one of the rare examples, where we can completely specify the
number of configurations at each energy level, which is

N∆(E) =

(
N

n

)
≈ 2NH( n

N ) = 2NH
(

E−Nϵ0
N∆

)
= 2NH

( E
N

−ϵ0
∆

)
.

Using the definition of micro-canonical entropy density (7), we get s(e) = H
(

e−ϵ0
∆

)
. We can write the

free energy density in terms of micro-canonical entropy density as

f(β) = − 1

β
ϕ(β) = − 1

β
sup
e
(s(e)− βe) = − 1

β
sup
e

(
H
(e− ϵ0

∆

)
− βe

)
.

4



To evaluate the supremum in the above equation, we take the first derivative ofH
(

e−ϵ0
∆

)
−βe with respect

to energy density e and equate it to zero, to get
∂H

(
e−ϵ0

∆

)
∂e

∣∣∣
e=e∗

− β = 0. Recall that ∂H(p)
∂p = ln( 1p − 1)

to obtain the stationary point

e∗ = ϵ0 +∆
e−β∆

1 + e−β∆
.

Since H : [0, 1] → R+ is a concave function, it follows that e∗ corresponds to the unique maxima.
Substituting this back into the expression for the free energy, we get

f(β) = − 1

β

(
H
(e∗ − ϵ0

∆

)
− βe∗

)
= ϵ0 −

1

β
ln(1 + e−β∆).

This expression is identical to the free energy for a single particle as expected, since summation of energy
functions amounts to no interaction system. The free energy of non-interacting N particle system, is
the aggregate free energy of N independent single particle systems.
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