Lecture-18: Statistical decision theory

1 Sherrington-Kirkpatrick model

Definition 1.1. Consider a space of row vectors $\mathfrak{X} \triangleq \mathbb{R}^{1 \times d}$ for any finite $d \in \mathbb{N}$. The inner product $\langle \rangle : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ is defined as $\langle a, b \rangle \triangleq ab^T = \sum_{i=1}^d a_i b_i$ for all $a, b \in \mathfrak{X}$. The outer product $\otimes : \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}^{d \times d}$ is defined as

$$a \otimes b \triangleq a^T b = \sum_{i=1}^N \sum_{j=1}^N a_i b_j e_i^T e_j.$$

Definition 1.2. We define the Frobenius norm on space of real matrices as $\|\|_F : \mathbb{R}^{d \times d} \to \mathbb{R}_+$ for any real matrix $A \in \mathbb{R}^{d \times d}$ as $\|A\|_F \triangleq \sqrt{\sum_{i,j=1}^d a_{i,j}^2}$.

Remark 1. Let $A \in \mathbb{R}^{d \times d}$, then $(AA^T)_{ij} = \sum_{k=1}^d a_{i,k}a_{j,k}$ for all $i, j \in [d]$. It follows that $\operatorname{tr}(AA^T) = \sum_{i,k=1}^d a_{i,k}^2 = \|A\|_F^2$. We can define the Frobenius inner product $\langle \rangle_F : \mathbb{R}^{d \times d} \times \mathbb{R}^{d \times d} \to \mathbb{R}$ as $\langle A, B \rangle \triangleq \operatorname{tr} AB^T$ for any two matrices $A, B \in \mathbb{R}^{d \times d}$. It follows that

$$||A - B||_{F}^{2} = ||A||_{F}^{2} + ||B||_{F}^{2} - \langle A, B \rangle_{F} - \langle B, A \rangle_{F}.$$

Definition 1.3. A random matrix $W : \Omega \to \mathbb{R}^{N \times N}$ is called a sample from **Gaussian orthogonal ensemble** (N) if (a) it is symmetric, i.e. $W_{i,j} = W_{j,i}$, and (b) all lower-diagonal matrix entries are independent zero-mean Gaussian random variables with the following variances

$$\mathbb{E}W_{i,j}^2 = \frac{1}{N}, \quad i \leqslant j, \qquad \qquad \mathbb{E}W_{i,i}^2 = \frac{2}{N}$$

Lemma 1.4. Consider a random matrix $W : \Omega \to \mathbb{R}^{N \times N}$ sampled from a Gaussian orthogonal ensemble. The density of W with respect to the Lebesgue measure on the space of real symmetric measures is

$$p(W) \triangleq \frac{1}{Z_N} e^{-\frac{N}{4} \|W\|_F^2},$$

where the partition function $Z_N \triangleq \int_W e^{-\frac{N}{4}} \|W\|_F^2 dW$.

Definition 1.5 (Sherrington-Kirkpatrick model). Consider a spin state in $\mathcal{Z} \triangleq \{-1, 1\}$ and state space of N interacting spin particles $\mathcal{X} \triangleq \mathcal{Z}^N$. We define a ferromagnetic model with N interacting spin particles with parametrized energy function $E_{\lambda,W} : \mathcal{X} \to \mathbb{R}$ in terms of parameter λ and random matrix W from Gaussian orthogonal ensemble (N), for spin configurations $\sigma \in \mathcal{X}$, as

$$E_{\lambda,W}(\sigma) \triangleq -\frac{1}{2} \sum_{i,j=1}^{N} W_{i,j} \sigma_i \sigma_j - \frac{\lambda}{2N} \sum_{i,j=1}^{N} \sigma_i \sigma_j.$$

Remark 2. We define row vector $1 \in \mathbb{Z}^{1 \times N}$ where $1_i = 1$ for all $i \in [N]$. In terms of row vectors $\sigma, 1 \in \mathbb{Z}^{1 \times N}$ we can write the energy as $E_{\lambda,W} = -\frac{1}{2} \langle \sigma W, \sigma \rangle - \frac{\lambda}{2N} \langle \sigma, 1 \rangle^2$.

Statistical models $\mathbf{2}$

We show the relation between statistical decision theory and statistical physics by showing the one-to-one correspondence between the quantities of interest in the \mathbb{Z}_2 synchronization problem and the Sherrington-Kirkpatrick spin glass model.

Definition 2.1. We consider a statistical model to be a family $\mathcal{P}(\Theta, \mathcal{Z}) \triangleq \{P_{\theta} \in \mathcal{M}(\mathcal{Z}) : \theta \in \Theta\}$ of probability distributions on a common space \mathcal{Z} parametrized by $\theta \in \Theta$, where Θ is the parameter space of the statistical model. We assume that observations $X: \Omega \to X \triangleq \mathbb{Z}^N$ are *i.i.d.* with a common distribution P_{θ} for some parameter $\theta \in \Theta$.

Definition 2.2. Consider the case when all measures in the family $\mathcal{P}(\Theta, \mathfrak{X})$ admit a density function with respect to a reference measure $\nu \in \mathcal{M}(\mathcal{Z})$. The likelihood of observation $\{X_n = z\}$ given a parameter $\theta \in \Theta$ is defined as

$$\mathcal{L}(\theta \mid z) \triangleq \frac{dP_{\theta}}{d\nu}(z).$$

Remark 3. We consider mostly the following two cases.

- 1. The set \mathcal{Z} is discrete and the reference measure ν is the counting measure. In this case, $\mathcal{L}(\theta \mid z) =$
- $\frac{dP_{\theta}}{d\nu}(z) = P_{\theta} \{X_n = z\}.$ 2. The set $\mathcal{Z} \subseteq \mathbb{R}^d$ for some $d \in \mathbb{N}$, and the reference measure is the Lebesgue measure on \mathbb{R}^d . In this case, $\mathcal{L}(\theta \mid z) = \frac{dP_{\theta}}{d\nu}(z) = p_{\theta}(z)$ is the density of P_{θ} evaluated at $z \in \mathcal{Z}$.

Remark 4. The energy of the physical system corresponds to the negative log-likelihood of the statistical model, i.e., $E(\theta) \triangleq -\ln \mathcal{L}(\theta \mid z)$ for all parameters $\theta \in \Theta$.

Example 2.3 (\mathbb{Z}_2 synchronization). Consider the parameter space $\Theta \triangleq \{-1,1\}^N$ and samples W from Gaussian orthogonal ensemble-(N). For some fixed but unknown parameter $\theta_0 \in \Theta$, let the observations be samples of random vector $Y: \Omega \to \mathbb{R}^{N \times N}$ defined as

$$Y \triangleq \frac{\lambda}{N} \theta_0 \otimes \theta_0 + W.$$

From the density of W, we can write the likelihood of θ given an observation Y as

$$\mathcal{L}(\theta \mid Y) = \frac{1}{Z_N} e^{-\frac{N}{4} \left\| Y - \frac{\lambda}{N} \theta \otimes \theta \right\|_F^2}.$$

We can write the log-likelihood of unknown parameter θ in terms of observation Y as

$$\ell(\theta \mid Y) \triangleq \log \mathcal{L}(\theta \mid Y) = -\frac{N}{4} \left\| Y - \frac{\lambda}{N} \theta \otimes \theta \right\|_{F}^{2} - \log Z_{N}.$$

We assume that λ is a known constant and is called the signal-to-noise ratio. We observe that $\log Z_N$ doesn't depend on parameter θ .

3 Statistical estimators

Definition 3.1. We denote the **prediction** or action space by \mathcal{A} , and the loss function by $L: \mathcal{A} \times \Theta \to \mathbb{R}$ that maps the loss of prediction from actual parameter to real number.

Remark 5. A common case is when prediction space $\mathcal{A} = \Theta = \mathbb{R}^d$ and $L(a, \theta) = ||a - \theta||^2$ for all $a, \theta \in \mathbb{R}^d$.

Example 3.2 (\mathbb{Z}_2 synchronization). There are two common square loss models considered.

Vector square loss. The prediction space is taken as the convex hull of Θ so that

$$\mathcal{A} \triangleq \operatorname{cvx}(\Theta) \triangleq \{\lambda \theta + (1 - \lambda)\theta' : \theta, \theta' \in \Theta, \lambda \in [0, 1]\} = [-1, 1]^N.$$

The loss function $L: \mathcal{A} \times \Theta \to \mathbb{R}$ is defined as $L(a, \theta) \triangleq \frac{1}{N} \|a - \theta\|^2$ for all $(a, \theta) \in \mathcal{A} \times \Theta$.

Matrix square loss. The prediction space is taken as the convex hull of $\Theta \otimes \Theta$ so that

$$\mathcal{A} \triangleq \operatorname{cvx}(\Theta \otimes \Theta) \triangleq \{\lambda \sigma + (1 - \lambda)\sigma' : \sigma, \sigma' \in \Theta \otimes \Theta, \lambda \in [0, 1]\} = [-1, 1]^{N \times N}$$

The loss function $L : \mathcal{A} \times \Theta \to \mathbb{R}$ is defined as $L(\mathcal{A}, \theta) \triangleq \frac{1}{N^2} \|\mathcal{A} - \theta \otimes \theta\|_F^2$ for all $(\mathcal{A}, \theta) \in \mathcal{A} \times \Theta$.

Definition 3.3. A function $f : \mathfrak{X} \to \mathcal{A}$ is called a statistical estimator.

3.1 Maximum likelihood estimator

Definition 3.4. A maximum likelihood estimator $f_{\text{ML}} : \mathfrak{X} \to \mathcal{A} = \Theta$ is the one that maximizes the likelihood of a parameter $\theta \in \Theta$ for each observation $x \in \mathfrak{X}$, i.e.,

$$f_{\mathrm{ML}}(x) \triangleq \arg \max \left\{ \mathcal{L}(\theta \mid x) : \theta \in \Theta \right\}$$

Remark 6. From the monotonicity of log function, it follows that the maximum likelihood estimator $f_{ML}(x) = \arg \min \{-\ell(\theta \mid x) : \theta \in \Theta\}$ for all $x \in \mathcal{X}$.

Example 3.5 (\mathbb{Z}_2 synchronization). Recall that $||Y||_F^2$ doesn't change for any $\theta \in \Theta$. Further, we observe that $\theta \otimes \theta = \theta^T \theta$ is a real symmetric matrix and $\langle \theta, \theta \rangle = \operatorname{tr} \theta \theta^T = 1$ for all $\theta \in \Theta$. It follows that

$$\|\theta \otimes \theta\|_F^2 = \operatorname{tr}(\theta^T \theta)(\theta^T \theta) = \operatorname{tr} \theta^T \theta = 1.$$

The inner product $\langle Y, \theta^T \theta \rangle_F = \operatorname{tr}(Y \theta^T \theta) = \langle \theta, \theta Y^T \rangle$ and $\langle \theta^T \theta, Y \rangle_F = \operatorname{tr}(\theta^T \theta Y^T) = \langle \theta Y^T, \theta \rangle$. Thus, the maximum likelihood estimator for this problem is given by

$$\hat{\theta}_{\mathrm{ML}} = f_{\mathrm{ML}}(Y) = \arg\min\left\{ \left\| Y - \frac{\lambda}{N} \theta \otimes \theta \right\|_{F}^{2} : \theta \in \Theta \right\} = \arg\max\left\{ \left\langle \theta, \theta Y^{T} \right\rangle : \theta \in \Theta \right\}.$$

3.2 Bayes estimator

Definition 3.6. Let $\mathcal{P}(\Theta, \mathfrak{X})$ be a statistical model for observations \mathfrak{X} that admits density for each parameter. Then, the **risk function** $R_L : \mathcal{A}^{\mathfrak{X}} \times \Theta \to \mathbb{R}$ for a loss function $L : \mathcal{A} \times \Theta \to \mathbb{R}$ is defined as $R_L(f, \theta) \triangleq \int_{\mathfrak{X}} L(f(x), \theta) p_{\theta}(x) dx$, for any statistical estimator $f : \mathfrak{X} \to \mathcal{A}$ and parameter $\theta \in \Theta$.

Definition 3.7. Let $Q \in \mathcal{M}(\Theta)$ be the **prior parameter distribution**, then the **expected risk** for a loss function $L : \mathcal{A} \times \Theta \to \mathbb{R}$ is defined as

$$R(Q, f, L) \triangleq \int_{\Theta} R_L(f, \theta) dQ(\theta)$$

The **Bayes risk function** $R_B : \mathcal{M}(\Theta) \times \mathbb{R}^{\mathcal{A} \times \Theta} \to \mathbb{R}$ is defined as $R_B(Q, L) \triangleq \inf \{R(Q, f, L) : f \in \mathbb{R}^{\mathcal{X}}\}$ for all prior distributions $Q \in \mathcal{M}(\Theta)$ and loss functions $L : \mathcal{A} \times \Theta \to \mathbb{R}$. The **Bayes estimator** $f_B : \mathcal{X} \to \mathcal{A}$ for a fixed prior distribution $Q \in \mathcal{M}(\Theta)$ and loss function $L : \mathcal{A} \times \Theta \to \mathbb{R}$ is defined as

$$f_B \triangleq \arg \min \left\{ R(Q, f, L) : f \in \mathcal{A}^{\mathcal{X}} \right\}.$$

Proposition 3.8 (Bayes). For a fixed prior distribution $Q \in \mathcal{M}(\Theta)$ and a loss function $L : \mathcal{A} \times \Theta \to \mathbb{R}$, the Bayes estimator minimizes the posterior expected value of this loss function, i.e.,

$$f_B(x) \triangleq \arg\min\left\{\int_{\Theta} L(a,\theta)\mathcal{L}(\theta \mid x)dQ(\theta) : a \in \mathcal{A}\right\}, \quad x \in \mathcal{X}.$$
(1)

Proof. For a fixed prior distribution Q and a loss function L, we can write the Bayes estimator as

$$f_B = \arg\min\left\{\int_{\Theta} dQ(\theta) \int_{\mathcal{X}} L(f(x), \theta) p_{\theta}(x) dx : f \in \mathcal{A}^{\mathcal{X}}\right\}$$

Recall that $\mathcal{L}(\theta \mid x) = p_{\theta}(x)$. Then, by interchanging the order of the integrals, we obtain

$$f_B = \arg\min\left\{\int_{\mathcal{X}} dx \int_{\Theta} dQ(\theta) L(f(x), \theta) \mathcal{L}(\theta \mid x) : f \in \mathcal{A}^{\mathcal{X}}\right\}.$$

The result follows from the fact that the inner integral depends only on a = f(x) for each $x \in \mathfrak{X}$, and it is minimized for each x by the Bayes estimator defined in (??).

Example 3.9 (\mathbb{Z}_2 synchronization). For $\mathcal{A} = \operatorname{cvx}(\Theta \otimes \Theta) = [-1, 1]^{N \times N}$, the matrix squared loss function $L(A, \theta) = ||A - \theta \otimes \theta||_F^2$ for all $(A, \theta) \in \mathcal{A} \times \Theta$, and uniform distribution $Q \in \mathcal{M}(\Theta)$, the Bayes estimator is

$$f_B(Y) = \arg\min\left\{\int_{\Theta} \|A - \theta \otimes \theta\|_F^2 \mathcal{L}(\theta \mid Y) dQ(\theta) : A \in [-1, 1]^{N \times N}\right\}$$

Recall that $\nabla_A \|A - \theta \otimes \theta\|_F^2 = \nabla_A \operatorname{tr}(A - \theta^T \theta)(A^T - \theta^T \theta) = 2(A - \theta^T \theta)$. It follows that the Bayes estimator $f_B(Y)$ is the solution to the following equation

$$f_B(Y) \int_{\Theta} \mathcal{L}(\theta \mid Y) dQ(\theta) = \int_{\Theta} \theta^T \theta \mathcal{L}(\theta \mid Y) dQ(\theta)$$

Using the fact that Q is a uniform distribution, we can write the Bayes estimator as

$$f_B(Y) = \sum_{\theta \in \Theta} \theta^T \theta \frac{\mathcal{L}(\theta \mid Y)}{\sum_{\theta \in \Theta} \mathcal{L}(\theta \mid Y)}$$

We further recall that the likelihood function is

$$\mathcal{L}(\theta \mid Y) \propto e^{-\frac{N}{4} \left\| Y - \frac{\lambda}{N} \theta^T \theta \right\|_F^2}.$$

Since $\|\theta^T \theta\|_F^2 = 1$ and $\|Y\|_F^2$ remains same for all $\theta \in \Theta$, we obtain

$$\mathcal{L}(\theta \mid Y) \propto e^{\frac{\lambda}{2} \langle \theta, \theta Y^T \rangle}.$$

Recall that W is real-symmetric, and so is $Y = \frac{\lambda}{N} \theta_0^T \theta_0 + W$. It follows that $Y = Y^T$ and

$$\frac{\lambda}{2} \left\langle \theta, \theta Y^T \right\rangle = \frac{\lambda}{2} \left\langle \theta, \theta W + \frac{\lambda}{N} \left\langle \theta, \theta_0 \right\rangle \theta_0 \right\rangle = \frac{\lambda}{2} \left\langle \theta, W \right\rangle + \frac{\lambda^2}{2N} \left\langle \theta, \theta_0 \right\rangle^2.$$

Defining $\nu_{\lambda,W} \triangleq \frac{\mathcal{L}(\theta|Y)}{\sum_{\theta \in \Theta} \mathcal{L}(\theta|Y)} \in \mathcal{M}(\Theta)$, we observe that $f_B = \sum_{\theta} \theta^T \theta \nu_{\lambda,W}(\theta)$.

3.3 Relation between \mathbb{Z}_2 synchronization and Sherrington-Kirkpatrick model

We observe that the configuration space in the Sherrington-Kirkpatrick model is identical to the parameter space in \mathbb{Z}_2 synchronization. If $\theta_0 = 1$, then $\mu_{\lambda} = \nu_{\lambda,W}$. In this case, $f_B = \langle \theta^T \theta \rangle$ and f_{ML} is the ground state configuration that minimizes energy $E_{\lambda,W}$.