
Lecture-18: Statistical decision theory

1 Sherrington-Kirkpatrick model

Definition 1.1. Consider a space of row vectors X ≜ R1×d for any finite d ∈ N. The inner product
⟨⟩ : X× X → R is defined as ⟨a, b⟩ ≜ abT =

∑d
i=1 aibi for all a, b ∈ X. The outer product ⊗ : X× X → Rd×d

is defined as

a⊗ b ≜ aT b =

N∑
i=1

N∑
j=1

aibje
T
i ej .

Definition 1.2. We define the Frobenius norm on space of real matrices as ∥∥F : Rd×d → R+ for any real

matrix A ∈ Rd×d as ∥A∥F ≜
√∑d

i,j=1 a
2
i,j .

Remark 1. Let A ∈ Rd×d, then (AAT )ij =
∑d

k=1 ai,kaj,k for all i, j ∈ [d]. It follows that tr(AAT ) =∑d
i,k=1 a

2
i,k = ∥A∥2F . We can define the Frobenius inner product ⟨⟩F : Rd×d×Rd×d → R as ⟨A,B⟩ ≜ trABT

for any two matrices A,B ∈ Rd×d. It follows that

∥A−B∥2F = ∥A∥2F + ∥B∥2F − ⟨A,B⟩F − ⟨B,A⟩F .

Definition 1.3. A random matrix W : Ω → RN×N is called a sample from Gaussian orthogonal ensem-
ble (N) if (a) it is symmetric, i.e. Wi,j = Wj,i, and (b) all lower-diagonal matrix entries are independent
zero-mean Gaussian random variables with the following variances

EW 2
i,j =

1

N
, i ⩽ j, EW 2

i,i =
2

N
.

Lemma 1.4. Consider a random matrix W : Ω → RN×N sampled from a Gaussian orthogonal ensemble.
The density of W with respect to the Lebesgue measure on the space of real symmetric measures is

p(W ) ≜
1

ZN
e−

N
4 ∥W∥2

F ,

where the partition function ZN ≜
∫
W

e−
N
4 ∥W∥2

F dW .

Definition 1.5 (Sherrington-Kirkpatrick model). Consider a spin state in Z ≜ {−1, 1} and state space
of N interacting spin particles X ≜ ZN . We define a ferromagnetic model with N interacting spin particles
with parametrized energy function Eλ,W : X → R in terms of parameter λ and random matrix W from
Gaussian orthogonal ensemble (N), for spin configurations σ ∈ X, as

Eλ,W (σ) ≜ −1

2

N∑
i,j=1

Wi,jσiσj −
λ

2N

N∑
i,j=1

σiσj .

Remark 2. We define row vector 1 ∈ Z1×N where 1i = 1 for all i ∈ [N ]. In terms of row vectors σ, 1 ∈ Z1×N

we can write the energy as Eλ,W = − 1
2 ⟨σW, σ⟩ − λ

2N ⟨σ, 1⟩2.
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2 Statistical models

We show the relation between statistical decision theory and statistical physics by showing the one-to-one
correspondence between the quantities of interest in the Z2 synchronization problem and the Sherrington-
Kirkpatrick spin glass model.

Definition 2.1. We consider a statistical model to be a family P(Θ,Z) ≜ {Pθ ∈ M(Z) : θ ∈ Θ} of prob-
ability distributions on a common space Z parametrized by θ ∈ Θ, where Θ is the parameter space of the
statistical model. We assume that observations X : Ω → X ≜ ZN are i.i.d. with a common distribution Pθ

for some parameter θ ∈ Θ.

Definition 2.2. Consider the case when all measures in the family P(Θ,X) admit a density function with
respect to a reference measure ν ∈ M(Z). The likelihood of observation {Xn = z} given a parameter θ ∈ Θ
is defined as

L(θ | z) ≜ dPθ

dν
(z).

Remark 3. We consider mostly the following two cases.
1. The set Z is discrete and the reference measure ν is the counting measure. In this case, L(θ | z) =

dPθ

dν (z) = Pθ {Xn = z} .
2. The set Z ⊆ Rd for some d ∈ N, and the reference measure is the Lebesgue measure on Rd. In this

case, L(θ | z) = dPθ

dν (z) = pθ(z) is the density of Pθ evaluated at z ∈ Z.

Remark 4. The energy of the physical system corresponds to the negative log-likelihood of the statistical
model, i.e., E(θ) ≜ − lnL(θ | z) for all parameters θ ∈ Θ.

Example 2.3 (Z2 synchronization). Consider the parameter space Θ ≜ {−1, 1}N and samples W
from Gaussian orthogonal ensemble-(N). For some fixed but unknown parameter θ0 ∈ Θ, let the
observations be samples of random vector Y : Ω → RN×N defined as

Y ≜
λ

N
θ0 ⊗ θ0 +W.

From the density of W , we can write the likelihood of θ given an observation Y as

L(θ | Y ) =
1

ZN
e−

N
4 ∥Y− λ

N θ⊗θ∥2

F .

We can write the log-likelihood of unknown parameter θ in terms of observation Y as

ℓ(θ | Y ) ≜ logL(θ | Y ) = −N

4

∥∥∥∥Y − λ

N
θ ⊗ θ

∥∥∥∥2
F

− logZN .

We assume that λ is a known constant and is called the signal-to-noise ratio. We observe that logZN

doesn’t depend on parameter θ.

3 Statistical estimators

Definition 3.1. We denote the prediction or action space by A, and the loss function by L : A×Θ → R
that maps the loss of prediction from actual parameter to real number.

Remark 5. A common case is when prediction space A = Θ = Rd and L(a, θ) = ∥a− θ∥2 for all a, θ ∈ Rd.

Example 3.2 (Z2 synchronization). There are two common square loss models considered.
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Vector square loss. The prediction space is taken as the convex hull of Θ so that

A ≜ cvx(Θ) ≜ {λθ + (1− λ)θ′ : θ, θ′ ∈ Θ, λ ∈ [0, 1]} = [−1, 1]N .

The loss function L : A×Θ → R is defined as L(a, θ) ≜ 1
N ∥a− θ∥2 for all (a, θ) ∈ A×Θ.

Matrix square loss. The prediction space is taken as the convex hull of Θ⊗Θ so that

A ≜ cvx(Θ⊗Θ) ≜ {λσ + (1− λ)σ′ : σ, σ′ ∈ Θ⊗Θ, λ ∈ [0, 1]} = [−1, 1]N×N .

The loss function L : A×Θ → R is defined as L(A, θ) ≜ 1
N2 ∥A− θ ⊗ θ∥2F for all (A, θ) ∈ A×Θ.

Definition 3.3. A function f : X → A is called a statistical estimator.

3.1 Maximum likelihood estimator

Definition 3.4. A maximum likelihood estimtor fML : X → A = Θ is the one that maximizes the
likelihood of a parameter θ ∈ Θ for each observation x ∈ X, i.e.,

fML(x) ≜ argmax {L(θ | x) : θ ∈ Θ} .

Remark 6. From the monotonicity of log function, it follows that the maximum likelihood estimator fML(x) =
argmin {−ℓ(θ | x) : θ ∈ Θ} for all x ∈ X.

Example 3.5 (Z2 synchronization). Recall that ∥Y ∥2F doesn’t change for any θ ∈ Θ. Further, we
observe that θ⊗ θ = θT θ is a real symmetric matrix and ⟨θ, θ⟩ = tr θθT = 1 for all θ ∈ Θ. It follows that

∥θ ⊗ θ∥2F = tr(θT θ)(θT θ) = tr θT θ = 1.

The inner product
〈
Y, θT θ

〉
F

= tr(Y θT θ) =
〈
θ, θY T

〉
and

〈
θT θ, Y

〉
F

= tr(θT θY T ) =
〈
θY T , θ

〉
. Thus,

the maximum likelihood estimator for this problem is given by

θ̂ML = fML(Y ) = argmin

{∥∥∥∥Y − λ

N
θ ⊗ θ

∥∥∥∥2
F

: θ ∈ Θ

}
= argmax

{〈
θ, θY T

〉
: θ ∈ Θ

}
.

3.2 Bayes estimator

Definition 3.6. Let P(Θ,X) be a statistical model for observations X that admits density for each parameter.
Then, the risk function RL : AX × Θ → R for a loss function L : A × Θ → R is defined as RL(f, θ) ≜∫
X
L(f(x), θ)pθ(x)dx, for any statistical estimator f : X → A and parameter θ ∈ Θ.

Definition 3.7. Let Q ∈ M(Θ) be the prior parameter distribution, then the expected risk for a loss
function L : A×Θ → R is defined as

R(Q, f, L) ≜
∫
Θ

RL(f, θ)dQ(θ).

The Bayes risk function RB : M(Θ)×RA×Θ → R is defined as RB(Q,L) ≜ inf
{
R(Q, f, L) : f ∈ RX

}
for

all prior distributions Q ∈ M(Θ) and loss functions L : A×Θ → R. The Bayes estimator fB : X → A for
a fixed prior distribution Q ∈ M(Θ) and loss function L : A×Θ → R is defined as

fB ≜ argmin
{
R(Q, f, L) : f ∈ AX

}
.
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Proposition 3.8 (Bayes). For a fixed prior distribution Q ∈ M(Θ) and a loss function L : A × Θ → R,
the Bayes estimator minimizes the posterior expected value of this loss function, i.e.,

fB(x) ≜ argmin

{∫
Θ

L(a, θ)L(θ | x)dQ(θ) : a ∈ A
}
, x ∈ X. (1)

Proof. For a fixed prior distribution Q and a loss function L, we can write the Bayes estimator as

fB = argmin

{∫
Θ

dQ(θ)

∫
X

L(f(x), θ)pθ(x)dx : f ∈ AX

}
.

Recall that L(θ | x) = pθ(x). Then, by interchanging the order of the integrals, we obtain

fB = argmin

{∫
X

dx

∫
Θ

dQ(θ)L(f(x), θ)L(θ | x) : f ∈ AX

}
.

The result follows from the fact that the inner integral depends only on a = f(x) for each x ∈ X, and it is
minimized for each x by the Bayes estimator defined in (??).

Example 3.9 (Z2 synchronization). For A = cvx(Θ ⊗ Θ) = [−1, 1]N×N , the matrix squared loss

function L(A, θ) = ∥A− θ ⊗ θ∥2F for all (A, θ) ∈ A×Θ, and uniform distribution Q ∈ M(Θ), the Bayes
estimator is

fB(Y ) = argmin

{∫
Θ

∥A− θ ⊗ θ∥2F L(θ | Y )dQ(θ) : A ∈ [−1, 1]N×N

}
.

Recall that ∇A ∥A− θ ⊗ θ∥2F = ∇A tr(A − θT θ)(AT − θT θ) = 2(A − θT θ). It follows that the Bayes
estimator fB(Y ) is the solution to the following equation

fB(Y )

∫
Θ

L(θ | Y )dQ(θ) =

∫
Θ

θT θL(θ | Y )dQ(θ).

Using the fact that Q is a uniform distribution, we can write the Bayes estimator as

fB(Y ) =
∑
θ∈Θ

θT θ
L(θ | Y )∑

θ∈Θ L(θ | Y )
.

We further recall that the likelihood function is

L(θ | Y ) ∝ e−
N
4 ∥Y− λ

N θT θ∥2

F .

Since
∥∥θT θ∥∥2

F
= 1 and ∥Y ∥2F remains same for all θ ∈ Θ, we obtain

L(θ | Y ) ∝ e
λ
2 ⟨θ,θY T ⟩.

Recall that W is real-symmetric, and so is Y = λ
N θT0 θ0 +W . It follows that Y = Y T and

λ

2

〈
θ, θY T

〉
=

λ

2

〈
θ, θW +

λ

N
⟨θ, θ0⟩ θ0

〉
=

λ

2
⟨θ,W ⟩+ λ2

2N
⟨θ, θ0⟩2 .

Defining νλ,W ≜ L(θ|Y )∑
θ∈Θ L(θ|Y ) ∈ M(Θ), we observe that fB =

∑
θ θ

T θνλ,W (θ).

3.3 Relation between Z2 synchronization and Sherrington-Kirkpatrick model

We observe that the configuration space in the Sherrington-Kirkpatrick model is identical to the parameter
space in Z2 synchronization. If θ0 = 1, then µλ = νλ,W . In this case, fB =

〈
θT θ

〉
and fML is the ground

state configuration that minimizes energy Eλ,W .

4


	Sherrington-Krikpatrick model
	Statistical models

