- 1. **Bayes risk for square loss function.** Consider the statistical decision theory simple setting with unconstrained parameter set $\Theta \triangleq \mathbb{R}^d$, input space $\mathfrak{X} = \Theta$, estimate $\hat{\theta} \triangleq \hat{T}(X, U)$ for observation X and external randomness $U : \Omega \to [0, 1]$, a prior $\pi \in \mathcal{M}(\Theta)$, and the quadratic loss $L : (\theta, \hat{\theta}) \mapsto ||\theta \hat{\theta}||^2$.
 - (a) Show that the best Bayes estimator is deterministic for any loss function. Consequently, it suffices to focus on deterministic estimators $\hat{T}(X)$.
 - (b) Show that for any estimator $\hat{T}(X)$, we have $\mathbb{E}[(\theta \mathbb{E}[\theta \mid X])\hat{T}(X)] = 0$.
 - (c) Show that the Bayes estimator for quadratic loss is $\hat{T}_B(X) \triangleq \mathbb{E}[\theta \mid X]$.
 - (d) Show that the Bayes risk is $\mathbb{E}[\operatorname{tr}(\operatorname{cov}(\theta \mid X))]$.
- 2. Bayes risk for quadratic GLM. Consider Consider the statistical decision theory simple setting with unconstrained parameter space $\Theta \triangleq \mathbb{R}^d$, input space $\mathfrak{X} = \Theta$, and estimate $\hat{\theta} \triangleq \hat{T}(X,U)$ for observation X and external randomness $U : \Omega \to [0,1]$. For GLM, the observation $X \triangleq \theta + Z$, where Z is independent of θ and has a zero-mean Gaussian distribution $\mathcal{N}(0,\sigma^2 I_d)$. Consider a Gaussian prior $\pi \in \mathcal{M}(\mathfrak{X})$ with zero mean and covariance matrix sI_d .
 - (a) Given the observation *X*, derive the posterior distribution $P_{\theta|X}$ and identify the parameters of this distribution in terms of *s* and σ^2 .
 - (b) Find the Bayes estimator and Bayes risk for quadratic loss function $L: \theta \times \hat{\theta} \mapsto ||\theta \hat{\theta}||^2$.
- 3. Minimax for quadratic GLM with constrained parameter space. Consider the statistical decision theory simple setting for Gaussian location model with constrained parameter space $\Theta \triangleq \mathbb{R}_+$, input space $\mathfrak{X} = \mathbb{R}$, observation $X \sim \mathcal{N}(\theta, \sigma^2)$, and quadratic loss function $L: (\theta, \hat{\theta}) \mapsto ||\hat{\theta} \theta||^2$.
 - (a) Show that the minimax quadratic risk of the GLM $X \sim \mathcal{N}(\theta, \sigma^2)$ with constrained parameter space $\Theta = \mathbb{R}_+$ is the same as the unconstrained case $\Theta = \mathbb{R}$.
 - (b) Show that the thresholded estimator $X_+ = X \vee 0$ achieves a better risk compared to maximum likelihood estimator, pointwise at every $\theta \in \mathbb{R}_+$.
- 4. Bayes risk for Cauchy prior and exponential family. Let $\mathfrak{X} \triangleq \mathbb{R}_+$ and consider *i.i.d.* random vector $X : \Omega \to \mathfrak{X}^n$ with common distribution $P_{\theta} \in \mathcal{M}(\mathfrak{X})$ where $P_{\theta}(0, x] \triangleq 1 e^{-\theta x}$ for all $x \in \mathbb{R}_+$. Let $\Theta \triangleq \mathbb{R}$ and the prior distribution $\pi \in \mathcal{M}(\Theta)$ follows the Cauchy distribution with parameter *s*, such that

$$\pi(\theta) \triangleq \int_{-\infty}^{\theta} \frac{1}{\pi s(1 + \frac{x^2}{s^2})} dx$$

Show that the Bayes risk $R_{\pi}^* \triangleq \inf_{\hat{\theta}} \mathbb{E} \left(\hat{\theta}(X) - \theta \right)^2$ satisfies the inequality $R_{\pi}^* \ge \frac{2s^2}{2ns^2+1}$.

- 5. Minimax risk for multiple observations under Bernoulli family. Consider statistical decision theory simple setting with $\Theta \triangleq [0,1]$, input space $\chi \triangleq \{0,1\}$, observation sample $X : \Omega \to \chi^m$ *i.i.d.* with common Bernoulli distribution with parameter $\theta \in \Theta$, and quadratic loss function $L : (\theta, \hat{\theta}) \mapsto (\theta \hat{\theta})^2$. We denote the minimax risk for *m*-sized sample by R_m^* .
 - (a) Compute the risk $R_{\theta}(\hat{\theta}_{emp})$ for the empirical estimate $\hat{\theta}_{emp} \triangleq \bar{X} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$. Show that $R_m^* \leq \frac{1}{4m}$.
 - (b) Compute the Fisher information of distribution $P_{\theta} \triangleq \text{Ber}(\theta)^{\otimes m}$ and $Q_{\theta} \triangleq \text{Bin}(m, \theta)$. Explain why they are equal.
 - (c) Show that the least favorable prior is not unique; in fact, there is a continuum of them. (**Hint:** Consider the Bayes estimator $\mathbb{E}[\theta \mid X]$ and show that it only depends on the first m + 1 moments of π).

6. Minimax risk for multiple observations under Gaussian family. Consider statistical decision theory simple setting for $\Theta \triangleq \left\{ \theta \in \mathbb{R}^{d \times d} : \|\theta\|_F \triangleq \sum_{i,j=1}^d \theta_{ij}^2 \leq r \right\}$, observation space $\mathfrak{X} \triangleq \mathbb{R}^d$, *i.i.d.* observation sample $X : \Omega \to \mathfrak{X}^m$ with common distribution $\mathcal{N}(0, \Sigma)$, and quadratic loss function $L : \Sigma \times \hat{\Sigma} \mapsto \|\Sigma - \hat{\Sigma}\|_F^2$. Show that the minimax quadratic risk satisfies

$$R^* \geqslant \left(\frac{d}{m} \wedge 1\right) r^2$$

To show this, one may have to find matching upper and lower bound on minimax risk.

(a) To show the upper bound, consider the sample covariance matrix defined as $\hat{\Sigma} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i X_i^{\top}$, and show that

$$\mathbb{E}\left\|\boldsymbol{\Sigma}-\hat{\boldsymbol{\Sigma}}\right\|_{F}^{2}=\frac{1}{m}$$

(b) To show the matching lower bound, show that for any positive semidefinite (PSD) matrices $\Sigma_0, \Sigma_1 \succeq 0$ and identity matrix I_d , the KL divergence satisfies

$$D\left(\mathcal{N}(0,I_d+\Sigma_0)\|\mathcal{N}(0,I_d+\Sigma_1)\right) \leqslant \frac{1}{2}\left\|\Sigma_0^{\frac{1}{2}}-\Sigma_1^{\frac{1}{2}}\right\|_F^2.$$

- 7. **Sample complexity as a function of dimensions.** Consider the matrix case $\Theta \triangleq \mathbb{R}^{d \times d}$ with *m* independent observations in zero mean unit variance Gaussian noise, and let ϵ be a small constant. Then we have
 - (a) For quadratic loss, namely, $\|\theta \hat{\theta}\|_{F}^{2}$, we have $R_{m}^{*} = \frac{d^{2}}{m}$ and hence $m^{*}(\epsilon) = \Theta(d^{2})$.
 - (b) If the loss function is $\|\theta \hat{\theta}\|_{op}^2$ then $R_m^* \simeq \frac{d}{m}$ and hence $m^*(\epsilon) = \Theta(d)$.
 - (c) If $T(\theta) \triangleq \max_{i \in [d]} \theta_i$, then $m^*(\epsilon) = \Theta(\sqrt{\ln d})$.
- 8. Minimax loss for bowl shaped functions. Consider the statistical decision theory simple setting where $\Theta = \mathcal{Y} = \mathcal{Y}'$, and the loss function $L : \theta \times \hat{\theta} \mapsto L(\theta, \hat{\theta}) \triangleq \rho(\theta \hat{\theta})$ is defined in terms of bowl-shaped loss functions $\rho : \mathbb{R}^d \times \mathbb{R}_+$ for all $x \in \mathbb{R}^d$. Show the following statements are true.
 - (a) For $\Theta \subseteq \mathbb{R}^d$ and $\rho(x) \triangleq ||x||_2^2$, the minimax risk is $R^* \asymp \frac{1}{m} \mathbb{E} ||Z||^2 = \frac{d}{m}$.
 - (b) For $\Theta \subseteq \mathbb{R}^d$ and $\rho(x) \triangleq ||x||_{\infty}$, we have $\mathbb{E} ||Z||_{\infty} \asymp \sqrt{\ln d}$ and the minimax risk is $R^* = \sqrt{\frac{d}{m}}$.
 - (c) For $\Theta \subseteq \mathbb{R}^{d \times d}$ and $\rho(\theta) = \|\theta\|_{\text{op}}$ denote the operator norm that is the maximum singular value. In this case, $\mathbb{E} \|Z\|_{\text{op}} \asymp \sqrt{d}$ and so minimax risk is $R^* = \sqrt{\frac{d}{m}}$.
 - (d) For $\Theta \subseteq \mathbb{R}^{d \times d}$ and $\rho(\theta) = \|\theta\|_F$, the minimax risk $R^* \asymp \frac{d}{\sqrt{m}}$.