- 1. **Bayes risk for square loss function.** Consider the statistical decision theory simple setting with unconstrained parameter set $\Theta \triangleq \mathbb{R}^d$, input space $\mathfrak{X} = \Theta$, estimate $\hat{\theta} \triangleq \hat{T}(X,U)$ for observation *X* and external randomness $U : \Omega \to [0,1]$, a prior $\pi \in \mathcal{M}(\Theta)$, and the quadratic $\text{loss } L: (\theta, \hat{\theta}) \mapsto ||\theta - \hat{\theta}||$ 2 .
	- (a) Show that the best Bayes estimator is deterministic for any loss function. Consequently, it suffices to focus on deterministic estimators $\hat{T}(X)$.
	- (b) Show that for any estimator $\hat{T}(X)$, we have $\mathbb{E}[(\theta \mathbb{E}[\theta | X])\hat{T}(X)] = 0$.
	- (c) Show that the Bayes estimator for quadratic loss is $\hat{T}_B(X) \triangleq \mathbb{E}[\theta | X]$.
	- (d) Show that the Bayes risk is $\mathbb{E}[\text{tr}(\text{cov}(\theta \mid X))].$
- 2. **Bayes risk for quadratic GLM.** Consider Consider the statistical decision theory simple setting with unconstrained parameter space $\Theta \triangleq \mathbb{R}^d$, input space $\mathcal{X} = \Theta$, and estimate $\hat{\theta} \triangleq \hat{T}(X,U)$ for observation X and external randomness $U : \Omega \to [0,1]$. For GLM, the observation *X* \triangleq *θ* + *Z*, where *Z* is independent of *θ* and has a zero-mean Gaussian distribution $\mathcal{N}(0,\sigma^2I_d)$. Consider a Gaussian prior $\pi\in\mathcal{M}(\mathfrak{X})$ with zero mean and covariance matrix *sI^d* .
	- (a) Given the observation *X*, derive the posterior distribution $P_{\theta|X}$ and identify the parameters of this distribution in terms of s and σ^2 .
	- (b) Find the Bayes estimator and Bayes risk for quadratic loss function $L:\theta\times\hat{\theta}\mapsto \|\theta-\hat{\theta}\|$ 2 .
- 3. **Minimax for quadratic GLM with constrained parameter space.** Consider the statistical decision theory simple setting for Gaussian location model with constrained parameter space $\Theta \triangleq \mathbb{R}_+$, input space $\mathfrak{X} = \mathbb{R}$, observation $X \sim \mathcal{N}(\theta, \sigma^2)$, and quadratic loss function $L: (\theta, \hat{\theta}) \mapsto ||\hat{\theta} - \theta||$ 2 .
	- (a) Show that the minimax quadratic risk of the GLM *X* ∼ $\mathcal{N}(\theta, \sigma^2)$ with constrained parameter space $\Theta = \mathbb{R}_+$ is the same as the unconstrained case $\Theta = \mathbb{R}$.
	- (b) Show that the thresholded estimator $X_+ = X \vee 0$ achieves a better risk compared to maximum likelihood estimator, pointwise at every $\theta \in \mathbb{R}_+$.
- 4. **Bayes risk for Cauchy prior and exponential family.** Let $\mathcal{X} \triangleq \mathbb{R}_+$ and consider *i.i.d.* random vector $X : \Omega \to \mathcal{X}^n$ with common distribution $P_\theta \in \mathcal{M}(\mathcal{X})$ where $P_\theta(0, x] \triangleq 1 - e^{-\theta x}$ for all $x \in \mathbb{R}_+$. Let $\Theta \triangleq \mathbb{R}$ and the prior distribution $\pi \in \mathcal{M}(\Theta)$ follows the Cauchy distribution with parameter *s*, such that

$$
\pi(\theta) \triangleq \int_{-\infty}^{\theta} \frac{1}{\pi s (1 + \frac{x^2}{s^2})} dx.
$$

Show that the Bayes risk $R^*_{\pi} \triangleq \inf_{\hat{\theta}} \mathbb{E} (\hat{\theta}(X) - \theta)^2$ satisfies the inequality $R^*_{\pi} \geqslant \frac{2s^2}{2ns^2}$. $rac{2s^2}{2ns^2+1}$.

- 5. **Minimax risk for multiple observations under Bernoulli family.** Consider statistical decision theory simple setting with $\Theta \triangleq [0,1]$, input space $\mathfrak{X} \triangleq \{0,1\}$, observation sample *X* : Ω → X *^m i.i.d.* with common Bernoulli distribution with parameter *θ* ∈ Θ, and quadratic loss function $L: (\theta, \hat{\theta}) \mapsto (\theta - \hat{\theta})^2$. We denote the minimax risk for *m*-sized sample by R_m^* .
	- (a) Compute the risk $R_{\theta}(\hat{\theta}_{emp})$ for the empirical estimate $\hat{\theta}_{emp} \triangleq \bar{X} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i$. Show that $R_m^* \leqslant \frac{1}{4m}.$
	- (b) Compute the Fisher information of distribution $P_{\theta} \triangleq \text{Ber}(\theta)^{\otimes m}$ and $Q_{\theta} \triangleq \text{Bin}(m, \theta)$. Explain why they are equal.
	- (c) Show that the least favorable prior is not unique; in fact, there is a continuum of them. **(Hint:** Consider the Bayes estimator $\mathbb{E}[\theta \mid X]$ and show that it only depends on the first $m + 1$ moments of π).

6. **Minimax risk for multiple observations under Gaussian family.** Consider statistical decision theory simple setting for $\Theta \triangleq \left\{ \theta \in \mathbb{R}^{d \times d} : \left\| \theta \right\|_F \triangleq \sum_{i,j=1}^d \theta_{ij}^2 \leqslant r \right\}$, observation space $X \triangleq \mathbb{R}^d$, *i.i.d.* observation sample $X : \Omega \to \mathcal{X}^m$ with common distribution $\mathcal{N}(0,\Sigma)$, and quadratic loss function *L* : Σ × Σ̂ ↔ $||$ Σ – Σ̂ $||$ 2 *F* . Show that the minimax quadratic risk satisfies

$$
R^* \geqslant \left(\frac{d}{m} \wedge 1\right) r^2.
$$

To show this, one may have to find matching upper and lower bound on minimax risk.

(a) To show the upper bound, consider the sample covariance matrix defined as $\hat{\Sigma} \triangleq$ $\frac{1}{m}\sum_{i=1}^{m}X_iX_i^{\top}$, and show that

$$
\mathbb{E}\left\|\Sigma-\hat{\Sigma}\right\|_{F}^{2}=\frac{1}{m}.
$$

(b) To show the matching lower bound, show that for any positive semidefinite (PSD) matrices Σ_0 , $\Sigma_1 \succeq 0$ and identity matrix *I_d*, the KL divergence satisfies

$$
D\left(\mathcal{N}(0,I_d+\Sigma_0)\|\mathcal{N}(0,I_d+\Sigma_1)\right)\leqslant \frac{1}{2}\left\|\Sigma_0^{\frac{1}{2}}-\Sigma_1^{\frac{1}{2}}\right\|_F^2.
$$

- 7. **Sample complexity as a function of dimensions.** Consider the matrix case $\Theta \triangleq \mathbb{R}^{d \times d}$ with *m* independent observations in zero mean unit variance Gaussian noise, and let *ϵ* be a small constant. Then we have
	- (a) For quadratic loss, namely, $\|\theta \hat{\theta}\|$ 2 $\frac{2}{F}$, we have $R_m^* = \frac{d^2}{m}$ $\frac{d^2}{m}$ and hence $m^*(\epsilon) = \Theta(d^2)$.
	- (b) If the loss function is $\left\|\theta \hat{\theta}\right\|$ 2 $\frac{d}{d_{\text{op}}}$ then $R_m^* \asymp \frac{d}{m}$ and hence $m^*(\epsilon) = \Theta(d)$.
	- (c) If $T(\theta) \triangleq \max_{i \in [d]} \theta_i$, then $m^*(\epsilon) = \Theta(\theta)$ √ ln*d*).
- 8. **Minimax loss for bowl shaped functions.** Consider the statistical decision theory simple setting where $\Theta = \mathcal{Y} = \mathcal{Y}'$, and the loss function $L : \theta \times \hat{\theta} \mapsto L(\theta, \hat{\theta}) \triangleq \rho(\theta - \hat{\theta})$ is defined in terms of bowl-shaped loss functions $\rho : \mathbb{R}^d \times \mathbb{R}_+$ for all $x \in \mathbb{R}^d$. Show the following statements are true.
	- (a) For $\Theta \subseteq \mathbb{R}^d$ and $\rho(x) \triangleq ||x||_2^2$ $\frac{2}{2}$, the minimax risk is $R^* \asymp \frac{1}{m} \mathbb{E} \left\| Z \right\|^2 = \frac{d}{m}$.
	- (b) For $\Theta \subseteq \mathbb{R}^d$ and $\rho(x) \triangleq ||x||_{\infty}$, we have $\mathbb{E} ||Z||_{\infty} \asymp \sqrt{2}$ $\overline{\ln d}$ and the minimax risk is $R^* =$ $\sqrt{\frac{d}{a}}$ $\frac{a}{m}$.
	- (c) For $\Theta \subseteq \mathbb{R}^{d \times d}$ and $\rho(\theta) = ||\theta||_{op}$ denote the operator norm that is the maximum singular value. In this case*,* $\mathbb{E}\left\Vert Z\right\Vert _{\text{op}}\asymp$ √ \overline{d} and so minimax risk is $R^* = \sqrt{\frac{d}{dt}}$ $\frac{a}{m}$.
	- (d) For $\Theta \subseteq \mathbb{R}^{d \times d}$ and $\rho(\theta) = ||\theta||_F$, the minimax risk $R^* \asymp \frac{d}{\sqrt{d}}$ $\frac{\ell}{m}$.