E2 237 Homework-04 Sep 26, 2024

1. Bayes risk for square loss function. Consider the statistical decision theory simple setting
with unconstrained parameter set ® £ R, input space X = @, estimate § £ T(X, U) for ob-
servation X and external randomness U : 3 — [0,1], a prior 7 € M(©), and the quadratic

A A2
loss L: (6,0) — ||6 —0]|".

(a) Show that the best Bayes estimator is deterministic for any loss function. Conse-
quently, it suffices to focus on deterministic estimators T'(X).

(b) Show that for any estimator T(X), we have E[(8 — E[# | X])T(X)] = 0.

(c) Show that the Bayes estimator for quadratic loss is T5(X) £ E[6 | X].

(d) Show that the Bayes risk is E[tr(cov(6 | X))].

2. Bayes risk for quadratic GLM. Consider Consider the statistical decision theory simple
setting with unconstrained parameter space © £ RY, input space X = ©, and estimate
0 £ T(X,U) for observation X and external randomness U : Q — [0,1]. For GLM, the
observation X £ 0 + Z, where Z is independent of § and has a zero-mean Gaussian distri-
bution A (0,021;). Consider a Gaussian prior 7t € M (X) with zero mean and covariance
matrix sl;.

(a) Given the observation X, derive the posterior distribution Py x and identify the pa-

rameters of this distribution in terms of s and ¢?.

(b) Find the Bayes estimator and Bayes risk for quadratic loss function L : 8 x 0 |6 — 9“2.

3. Minimax for quadratic GLM with constrained parameter space. Consider the statistical
decision theory simple setting for Gaussian location model with constrained parameter
space ® £ R, input space X = R, observation X ~ N (6,0?), and quadratic loss function

A A 2
L:(6,0)—||6—96|.
(a) Show that the minimax quadratic risk of the GLM X ~ A/(0,0?) with constrained
parameter space © = IR, is the same as the unconstrained case © = R.

(b) Show that the thresholded estimator X = X V 0 achieves a better risk compared to
maximum likelihood estimator, pointwise at every 6 € R...

4. Bayes risk for Cauchy prior and exponential family. Let X = R and consider i.i.d. ran-
dom vector X : Q) — X" with common distribution Py € M (X) where P (0,x] £ 1 — e~% for
allx € R;. Let ® £ R and the prior distribution 7t € M(®) follows the Cauchy distribution
with parameter s, such that
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Show that the Bayes risk R = inf; [E (9(X ) — 9)2 satisfies the inequality R}, > 2112522“.

5. Minimax risk for multiple observations under Bernoulli family. Consider statistical de-
cision theory simple setting with ® £ [0,1], input space X = {0,1}, observation sample
X : Q) — X™i.id. with common Bernoulli distribution with parameter 6 € ©, and quadratic
loss function L : (6,0) + (6 — 8)2. We denote the minimax risk for n-sized sample by R?,.

(a) Compute the risk Rg(femp) for the empirical estimate femp = X = L Y7, X;. Show that
R, < &

= dme
(b) Compute the Fisher information of distribution Py £ Ber(#)“" and Qp = Bin(m,0).
Explain why they are equal.
(c) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: Consider the Bayes estimator E[f | X] and show that it only depends on the
first m + 1 moments of 7).
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6. Minimax risk for multiple observations under Gaussian family. Consider statistical de-
cision theory simple setting for @ = {9 e R 0] = ijzl 9% < r}, observation space
X £ RY, i.id. observation sample X : Q — X" with common distribution N(0,Z), and
quadratic loss function L: £ x ¥ — = - ﬁ“i Show that the minimax quadratic risk sat-
isfies

R* > (E ALY
m

To show this, one may have to find matching upper and lower bound on minimax risk.

(a) To show the upper bound, consider the sample covariance matrix defined as ¥ =
% 1 XiXiT , and show that
1
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(b) To show the matching lower bound, show that for any positive semidefinite (PSD)
matrices 29,21 > 0 and identity matrix I;, the KL divergence satisfies

2

1.1 1
D(N(O,Id+ZO)H./\/'(O,Id+21)> < 5 ’ ¥2 - 32
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7. Sample complexity as a function of dimensions. Consider the matrix case @ £ R**¢ with
m independent observations in zero mean unit variance Gaussian noise, and let € be a
small constant. Then we have

4112 * 2 *
6 — ]|, we have R}, = 2~ and hence m*(e) = ©(d?).

(a) For quadratic loss, namely,
(b) If the loss function is || — @Hip then R}, < 4 and hence m* () = ©(d).
(c) IfT(9) = maxie|q) 0;, then m*(e) = (VInd).

8. Minimax loss for bowl shaped functions. Consider the statistical decision theory simple
setting where ® = Y =Y/, and the loss function L: 6 x 0+ L(6,0) £ p(6 — 0) is defined
in terms of bowl-shaped loss functions p : R? x R for all x € R?. Show the following
statements are true.

(a) For ® C R? and p(x) £ ||x||§, the minimax risk is R* < 1E 1Z||* = q
(b) For ® C R¥ and p(x) £ ||x||,, we have E||Z|, < VInd and the minimax risk is R* =

\/Z
2,
(c) For ® C R and p() = |6]]op denote the operator norm that is the maximum sin-

gular value. In this case, E[| Z|,, < V/d and so minimax risk is R* = /4.

(d) For ® C R**¥ and p(6) = ||0||;, the minimax risk R* < ﬁ.



