
E2 237 Homework-04 Sep 26, 2024

1. Bayes risk for square loss function. Consider the statistical decision theory simple setting
with unconstrained parameter set Θ ≜ Rd, input space X= Θ, estimate θ̂ ≜ T̂(X,U) for ob-
servation X and external randomness U : Ω → [0,1], a prior π ∈M(Θ), and the quadratic
loss L : (θ, θ̂) 7→

∥∥θ − θ̂
∥∥2

.

(a) Show that the best Bayes estimator is deterministic for any loss function. Conse-
quently, it suffices to focus on deterministic estimators T̂(X).

(b) Show that for any estimator T̂(X), we have E[(θ − E[θ | X])T̂(X)] = 0.

(c) Show that the Bayes estimator for quadratic loss is T̂B(X)≜ E[θ | X].

(d) Show that the Bayes risk is E[tr(cov(θ | X))].

2. Bayes risk for quadratic GLM. Consider Consider the statistical decision theory simple
setting with unconstrained parameter space Θ ≜ Rd, input space X = Θ, and estimate
θ̂ ≜ T̂(X,U) for observation X and external randomness U : Ω → [0,1]. For GLM, the
observation X ≜ θ + Z, where Z is independent of θ and has a zero-mean Gaussian distri-
bution N (0,σ2 Id). Consider a Gaussian prior π ∈ M(X) with zero mean and covariance
matrix sId.

(a) Given the observation X, derive the posterior distribution Pθ|X and identify the pa-
rameters of this distribution in terms of s and σ2.

(b) Find the Bayes estimator and Bayes risk for quadratic loss function L : θ × θ̂ 7→
∥∥θ − θ̂

∥∥2
.

3. Minimax for quadratic GLM with constrained parameter space. Consider the statistical
decision theory simple setting for Gaussian location model with constrained parameter
space Θ ≜ R+, input space X = R, observation X ∼ N (θ,σ2), and quadratic loss function
L : (θ, θ̂) 7→

∥∥θ̂ − θ
∥∥2

.

(a) Show that the minimax quadratic risk of the GLM X ∼ N (θ,σ2) with constrained
parameter space Θ = R+ is the same as the unconstrained case Θ = R.

(b) Show that the thresholded estimator X+ = X ∨ 0 achieves a better risk compared to
maximum likelihood estimator, pointwise at every θ ∈ R+.

4. Bayes risk for Cauchy prior and exponential family. Let X≜ R+ and consider i.i.d. ran-
dom vector X : Ω →Xn with common distribution Pθ ∈M(X) where Pθ(0, x]≜ 1− e−θx for
all x ∈R+. Let Θ≜R and the prior distribution π ∈M(Θ) follows the Cauchy distribution
with parameter s, such that

π(θ)≜
∫ θ

−∞

1

πs(1 + x2

s2 )
dx.

Show that the Bayes risk R∗
π ≜ infθ̂ E

(
θ̂(X)− θ

)2
satisfies the inequality R∗

π ⩾ 2s2

2ns2+1 .

5. Minimax risk for multiple observations under Bernoulli family. Consider statistical de-
cision theory simple setting with Θ ≜ [0,1], input space X ≜ {0,1}, observation sample
X : Ω →Xm i.i.d. with common Bernoulli distribution with parameter θ ∈ Θ, and quadratic
loss function L : (θ, θ̂) 7→ (θ − θ̂)2. We denote the minimax risk for m-sized sample by R∗

m.

(a) Compute the risk Rθ(θ̂emp) for the empirical estimate θ̂emp ≜ X̄ ≜ 1
m ∑m

i=1 Xi. Show that
R∗

m ⩽ 1
4m .

(b) Compute the Fisher information of distribution Pθ ≜ Ber(θ)⊗m and Qθ ≜ Bin(m,θ).
Explain why they are equal.

(c) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: Consider the Bayes estimator E[θ | X] and show that it only depends on the
first m + 1 moments of π).
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6. Minimax risk for multiple observations under Gaussian family. Consider statistical de-
cision theory simple setting for Θ ≜

{
θ ∈ Rd×d : ∥θ∥F ≜ ∑d

i,j=1 θ2
ij ⩽ r

}
, observation space

X ≜ Rd, i.i.d. observation sample X : Ω → Xm with common distribution N (0,Σ), and
quadratic loss function L : Σ × Σ̂ 7→

∥∥Σ − Σ̂
∥∥2

F. Show that the minimax quadratic risk sat-
isfies

R∗ ⩾
( d

m
∧ 1

)
r2.

To show this, one may have to find matching upper and lower bound on minimax risk.

(a) To show the upper bound, consider the sample covariance matrix defined as Σ̂ ≜
1
m ∑m

i=1 XiX⊤
i , and show that

E
∥∥Σ − Σ̂

∥∥2
F =

1
m

.

(b) To show the matching lower bound, show that for any positive semidefinite (PSD)
matrices Σ0,Σ1 ⪰ 0 and identity matrix Id, the KL divergence satisfies

D
(
N (0, Id + Σ0)∥N (0, Id + Σ1)

)
⩽

1
2

∥∥∥∥Σ
1
2
0 − Σ

1
2
1

∥∥∥∥2

F
.

7. Sample complexity as a function of dimensions. Consider the matrix case Θ ≜ Rd×d with
m independent observations in zero mean unit variance Gaussian noise, and let ϵ be a
small constant. Then we have

(a) For quadratic loss, namely,
∥∥θ − θ̂

∥∥2
F, we have R∗

m = d2

m and hence m∗(ϵ) = Θ(d2).

(b) If the loss function is
∥∥θ − θ̂

∥∥2
op then R∗

m ≍ d
m and hence m∗(ϵ) = Θ(d).

(c) If T(θ)≜ maxi∈[d] θi, then m∗(ϵ) = Θ(
√

lnd).

8. Minimax loss for bowl shaped functions. Consider the statistical decision theory simple
setting where Θ = Y = Y′, and the loss function L : θ × θ̂ 7→ L(θ, θ̂) ≜ ρ(θ − θ̂) is defined
in terms of bowl-shaped loss functions ρ : Rd × R+ for all x ∈ Rd. Show the following
statements are true.

(a) For Θ ⊆ Rd and ρ(x)≜ ∥x∥2
2, the minimax risk is R∗ ≍ 1

m E∥Z∥2 = d
m .

(b) For Θ ⊆ Rd and ρ(x)≜ ∥x∥∞, we have E∥Z∥∞ ≍
√

lnd and the minimax risk is R∗ =√
d
m .

(c) For Θ ⊆ Rd×d and ρ(θ) = ∥θ∥op denote the operator norm that is the maximum sin-

gular value. In this case, E∥Z∥op ≍
√

d and so minimax risk is R∗ =
√

d
m .

(d) For Θ ⊆ Rd×d and ρ(θ) = ∥θ∥F, the minimax risk R∗ ≍ d√
m .


