1. **Total variation distance.** Consider a measurable space $(\mathfrak{X}, \mathfrak{F})$ and the set $\mathcal{M}(\mathfrak{X})$ of probability distributions on X . The total variation distance for P , $Q \in \mathcal{M}(X)$, is defined as

$$
TV(P,Q) \triangleq \frac{1}{2} \mathbb{E}_Q \left| \frac{dP}{dQ} - 1 \right|.
$$

- (a) Show that $TV(P,Q) = 1 \int_{\mathcal{X}} d(P \wedge Q)$.
- (b) Show that $TV : \mathcal{M}(\mathfrak{X}) \times \mathcal{M}(\mathfrak{X}) \to \mathbb{R}_+$ is a metric on the space of probability distributions $\mathcal{M}(\mathfrak{X})$.
- 2. *f***-divergence.** Consider a measurable space $(\mathfrak{X}, \mathfrak{F})$, the set $\mathcal{M}(\mathfrak{X})$ of probability distributions on \mathfrak{X} , and a map $f : (0, \infty) \to \mathbb{R}_+$. The *f*-divergence for any $P, Q \in \mathcal{M}(\mathfrak{X})$ such that *P* ≪ *Q* is defined as

$$
D_f(P||Q) \triangleq \mathbb{E}_Q f\Big(\frac{dP}{dQ}\Big).
$$

Consider $h : (\infty, 0) \to \mathbb{R}_+$ such that $h(x) \triangleq f(x) + a(x - 1)$ for some $a \in \mathbb{R}$ and all $x \in \mathcal{X}$. Show that $D_h = D_f$, i.e. functions differing in a linear term lead to the same f -divergence.

- 3. χ^2 **divergence.** Let P , $Q \in \mathcal{M}(\mathfrak{X})$ Consider χ^2 divergence defined as $\chi^2(P\|Q) \triangleq \int_{\mathfrak{X}} dQ\Big(\frac{dP}{dQ}-$ 1)². Show that $D(P||Q) \le \ln(1 + \chi^2(P||Q)).$
- 4. **Hellinger distance.** Consider the Hellinger distance $H(P,Q) \triangleq \sqrt{H^2(P,Q)}$
	- (a) Show that Hellinger distance $H : \mathcal{M}(\mathfrak{X}) \times \mathcal{M}(\mathfrak{X}) \to \mathbb{R}_+$ defines a metric on the space of probability distributions $\mathcal{M}(\mathfrak{X})$.
	- (b) Show that $P \mapsto H(P, Q)$ is not a convex map.
- 5. Le Cam distance. Consider Le Cam distance defined as $LC(P,Q) \triangleq \frac{1}{2} \int_X$ (*dQ*−*dP*) 2 *dQ*+*dP* for all $P, Q \in \mathcal{M}(\mathfrak{X})$. Show that \sqrt{LC} : $\mathcal{M}(\mathfrak{X}) \times \mathcal{M}(\mathfrak{X}) \to \mathbb{R}_+$ defines a metric on the space of probability distributions $\mathcal{M}(\mathfrak{X})$.
- 6. **Jensen Shannon divergence.** Consider Jensen Shannon divergence defined as $JS(P,Q) \triangleq$ $D(P||\frac{1}{2})$ $\frac{1}{2}(P+Q)$) + $D(Q||\frac{1}{2})$ $\frac{1}{2}(P+Q)$ for all P , $Q \in \mathcal{M}(\mathfrak{X})$. Show that \sqrt{JS} : $\mathcal{M}(\mathfrak{X}) \times \mathcal{M}(\mathfrak{X}) \rightarrow$ \mathbb{R}_+ defines a metric on the space of probability distributions $\mathcal{M}(\mathfrak{X})$.
- 7. **KL Divergence for GLM**. Consider the Gaussian location model, where the parametrized distribution for observations is given by $P^{\theta} \triangleq \mathcal{N}(\theta, \Sigma)$.
	- (a) Show that $J_F(\theta) = \Sigma^{-1}$.
	- (b) Consider unconstrained parameter space $\Theta \subseteq \mathbb{R}^d$, and Gaussians $P^{\theta_i} \triangleq \mathcal{N}(\theta_i, \Sigma_i)$ for $i \in \{0,1\}$. Assuming det $\Sigma_0 \neq 0$, show that

$$
D(P^{\theta_0} \| P^{\theta_1}) = \frac{1}{2} (\theta_0 - \theta_1)^T \Sigma_1^{-1} (\theta_0 - \theta_1) + \frac{1}{2} \Big(\ln \det \Sigma_1 - \ln \det \Sigma_0 + \text{tr}(\Sigma_1^{-1} \Sigma_0 - I_d) \Big).
$$

8. Local behavior of divergence of mixtures. Let $\lambda \in [0,1]$, $i \in \{0,1\}$ and $P_i, Q_i \in \mathcal{M}(\mathfrak{X})$, to define mixture distribution $P_i^{\lambda} \triangleq \bar{\lambda}P_i + \lambda Q_i$. Show that under suitable technical conditions, the following equations hold

$$
\frac{d}{d\lambda}\Big|_{\lambda=0}D(P_0^{\lambda}||P_1) = \mathbb{E}_{Q_0}\ln\frac{dP_0}{dP_1} - D(P_0||P_1),
$$

$$
\frac{d}{d\lambda}\Big|_{\lambda=0}D(P_1^{\lambda}||P_0^{\lambda}) = \mathbb{E}_{Q_1}\ln\frac{dP_1}{dP_0} - D(P_1||P_0) + \mathbb{E}_{P_1}\Big[1 - \frac{dQ_0}{dP_0}\Big]
$$

.

9. **Fisher information for mixture of distributions.** Let P , $Q \in M(\mathcal{X})$ and $\Theta \triangleq [0,1]$ and define $P^{\theta} \triangleq \theta P + \bar{\theta} Q \in \mathcal{M}(\mathcal{X})$. Show that $\lim_{\theta \downarrow 0} J_F(\theta) = \chi^2(P||Q)$.