
E2 237 Homework-06 Oct 24, 2024

1. Minimax risk for Bernoulli model of coin flips. Consider the statistical decision theory
simple setting with Θ ≜ [0,1], observation space X ≜ {0,1}, i.i.d. observation sample X :
Ω → Xm under unknown Bernoulli probability distribution with parameter θ ∈ Θ, and
quadratic loss function L : (θ, θ̂) 7→ (θ − θ̂)2. We denote the minimax risk for sample of size
m by R∗

m.

(a) Compute the risk Rθ(θ̂emp) for the empirical estimate θ̂emp ≜ X̄ ≜ 1
m ∑m

i=1 Xi, and show
that R∗

m ⩽ 1
4m .

(b) Compute the Fisher information of Pθ ≜ Ber(θ)⊗m and Qθ ≜ Bin(m,θ). Explain why
they are equal.

(c) Invoke the Bayesian Cramér-Rao lower bound theorem to show that R∗
m = 1+o(1)

4m .

(d) Notice that the risk of θ̂ is maximized at θ = 1/2 (fair coin), which suggests that it
might be possible to hedge against this situation by the following randomized esti-
mator

θ̂(X,U)≜ θ̂emp1{U⩽δ} +
1
2
1{U>δ},

for an external uniform randomness U : Ω → [0,1] independent of observations. Find
the worst-case risk of θ̂(X,U) as a function of δ. Optimizing over δ, show the im-
proved upper bound of R∗

m ⩽ 1
4(m+1) .

(e) Recall that a randomized estimator can always be improved if the loss is convex; so
we should average out the randomness in θ̂(X,U) by considering the estimator

θ̂∗ ≜ E[θ̂(X,U) | X] = X̄δ +
1
2
(1 − δ).

Optimizing over δ to minimize the worst-case risk, find the resulting estimator θ̂∗ and
its risk, show that it is constant independent of θ, and conclude R∗

m ⩽ 1
4(1+

√
m)2 .

(f) Show that θ̂∗ found in part (e) is exactly minimax and hence R∗
m = 1

4(1+
√

m)2 . Recall

that Γ(a)≜
∫

R+
xa−1e−xdx. Consider the following prior Beta(a,b) with the following

density for all θ ∈ Θ,

π(θ)≜
Γ(a + b)
Γ(a)Γ(b)

θa−1(1 − θ)b−1,

Show that if a = b =
√

m
2 , then estimator θ̂∗ coincides with the Bayes estimator for this

prior, which is therefore least favorable.
(Hint: work with the sufficient statistic S ≜ ∑m

i=1 Xi.)

(g) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: consider the Bayes estimator E[θ | X] and show that it only depends on the first
m + 1 moments of π.)

(h) k-ary alphabet. Consider k-ary input space X ≜ [k], such that i.i.d. observation sam-
ple X : Ω → Xm has a common distribution P ∈ M(X). Show that for any k,m, the
minimax squared risk of estimating P is exactly

R∗(k,m)≜ inf
P̂

sup
P∈Pk

E
∥∥P̂ − P

∥∥2
2 =

k − 1
k(1 +

√
m)2 ,

achieved by add
√

m
k estimator.

(Hint: For the lower bound, show that the Bayes estimator for the squared loss and
the KL loss coincide.)
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2. Maximum of ratio. Show that for vector x,y ∈ Rd and a positive definite matrix Σ ∈ Rd×d,

we have supx ̸=0
⟨x,y⟩2

x⊤Σx = y⊤Σ−1y, where the maxima is achieved at x∗ = Σ−1y.

3. Chernoff-Rubin-Stein lower bound. Consider statistical decision theory simple setting
with Θ ≜ [−a, a] and Y,Y′ ⊆ R. Consider an i.i.d. observation sample X : Ω → Xm with
common distribution Pθ ∈M(X).

(a) State the appropriate regularity conditions and prove the following minimax lower
bound,

inf
θ̂

sup
θ∈Θ

Eθ(θ − θ̂)2 ⩾ min
ϵ∈(0,1)

max
{

ϵ2a2,
(1 − ϵ)2

mJ̄F

}
.

where J̄F ≜ 1
|Θ|

∫
Θ JF(θ)dθ is the average Fisher information. (Hint: Consider the uni-

form prior on Θ and proceed as in the proof of Theorem 29.2 by applying integration
by parts.)

(b) Simplify the above bound and show that

inf
θ̂

sup
θ∈Θ

Eθ(θ − θ̂)2 ⩾
1

(a−1 +
√

mJ̄F)2
. (1)

(c) Assuming the continuity of map θ 7→ JF(θ), show that the above result also leads
to the optimal local minimax lower bound in Theorem 29.4 obtained from Bayesian
Cramér-Rao lower bound, i.e.

inf
θ̂

sup
θ−θ0∈[−m1/4,m1/4]

Eθ(θ − θ̂)2 ⩾
1 + o(1)
mJF(θ0)

.

4. Prior with smallest Fisher information. Show that the optimal density with a compact
support is a squared cosine density g : [−1,1] → R defined as g(u) ≜ cos2 πu

2 for all u ∈
[−1,1]. Further, show that the minimum Fisher information is

min
g on [−1,1]

J(g) = π2.

5. Data processing inequality for f -divergence. For any Markov chain X → Y → Z, a pair
of measures PX,Y,Z and QX,Y,Z with common Markov kernel PZ|Y = QZ|Y, a convex map
f : (0,∞)→ R+, and arbitrary function g : X× Z→ R, we have

D f (PX,Y∥QX,Y)⩾ D f (PX,Z∥QX,Z)⩾ D f (Pg(X,Z)∥Qg(X,Z)).

6. HCR for GLM. Consider an i.i.d. random vector X : Ω → Xm with the common probability
distribution Pθ ≜ N (θ,1) with unknown mean θ ∈ R and known variance 1. Consider
the sample mean estimator θ̂(X) ≜ 1

m ∑m
i=1 Xi. Using the Hammersley-Chapman-Robbins

(HCR) lower bound, compute a lower bound for the variance of any unbiased estimator of
θ, assuming you are comparing θ and θ′ ≜ θ + δ where δ ̸= 0.

(a) Given that Pθ and Pθ′ are Gaussian distributions, calculate χ2(Pθ′∥Pθ) in terms of δ.

(b) Use the result from the χ2-divergence to provide the HCR lower bound for the vari-
ance of any unbiased estimator of θ.

(c) Based on your results, if n = 10 and δ = 0.1, what is the numerical lower bound for
the variance of the estimator θ̂?


