E2 237 Homework-06 Oct 24, 2024

1. Minimax risk for Bernoulli model of coin flips. Consider the statistical decision theory
simple setting with @ £ [0,1], observation space X £ {0,1}, i.i.d. observation sample X :
0 — X™ under unknown Bernoulli probability distribution with parameter 6 € ®, and
quadratic loss function L: (6,) + (6 — 0)?. We denote the minimax risk for sample of size
m by Ry,

Y"1 X;, and show

(a) Compute the risk Ry (@emp) for the empirical estimate éemp £xX£ %

that R}, < 2.
(b) Compute the Fisher information of P? £ Ber(0)®™ and Q? £ Bin(m,0). Explain why
they are equal.

1+0(1)

(c) Invoke the Bayesian Cramér-Rao lower bound theorem to show that R}, = — ~.

(d) Notice that the risk of f is maximized at § = 1/2 (fair coin), which suggests that it
might be possible to hedge against this situation by the following randomized esti-
mator

) A 1
0(X,U) = Oemp L u<s) + 51 {u>s)s

for an external uniform randomness U : 3 — [0,1] independent of observations. Find
the worst-case risk of §(X,U) as a function of §. Optimizing over §, show the im-
1

proved upper bound of R}, < T

(e) Recall that a randomized estimator can always be improved if the loss is convex; so
we should average out the randomness in (X, U) by considering the estimator

0* 2EO(X,U) | X] = X6 + %(1 —9).

Optimizing over § to minimize the worst-case risk, find the resulting estimator §* and

its risk, show that it is constant independent of 6, and conclude Rj, < —_1__

4(1+/m)?"

(f) Show that 6* found in part (e) is exactly minimax and hence R}, = —1—. Recall

4(1++/m)?
that T'(a) = fIR+ x"~le=*dx. Consider the following prior Beta(a,b) with the following
density for all 0 € ©,
a I(a+b)

"0 = Far)

911—1(1 . G)b_l,

Show thatifa=b= @, then estimator 6* coincides with the Bayes estimator for this
prior, which is therefore least favorable.

(Hint: work with the sufficient statistic S = Y7 ; X;.)

(g) Show that the least favorable prior is not unique; in fact, there is a continuum of them.
(Hint: consider the Bayes estimator E[f | X] and show that it only depends on the first
m + 1 moments of 7t.)

(h) k-ary alphabet. Consider k-ary input space X = [k], such that i.i.d. observation sam-
ple X : O — X™ has a common distribution P € M(X). Show that for any k,m, the
minimax squared risk of estimating P is exactly

k-1

R*(k,m) LinfsupE||[P— PP = —~—~
(k,m) Hl; If;lg’k H Hz k(1 + /m)?

achieved by add @ estimator.
(Hint: For the lower bound, show that the Bayes estimator for the squared loss and
the KL loss coincide.)



E2 237 Homework-06, Page 2 of 2 Oct 24, 2024
2. Maximum of ratio. Show that for vector x,yy € R? and a positive definite matrix & € R9*¢,

2
we have sup, iﬁygx =y =1y, where the maxima is achieved at x* = £~ 1y.

3. Chernoff-Rubin-Stein lower bound. Consider statistical decision theory simple setting
with ® £ [—a,a] and Y, C R. Consider an i.i.d. observation sample X : Q — X" with
common distribution Py € M (X).

(a) State the appropriate regularity conditions and prove the following minimax lower
bound,

. A)2 : 22 (1—€)?

infsupEg(6 — )" > min maxqe“a”,~———— 5.
0 pco® ec(0,1) T’YZ]F

where Jr =S |;ﬁ| f® Jr(6)d0 is the average Fisher information. (Hint: Consider the uni-

form prior on ® and proceed as in the proof of Theorem 29.2 by applying integration

by parts.)

(b) Simplify the above bound and show that

N 1
infsupEg(0 — 0)> > ——.
0 Geg (a1 4 \/mJF)?

(c) Assuming the continuity of map 6 — Jr(6), show that the above result also leads
to the optimal local minimax lower bound in Theorem 29.4 obtained from Bayesian
Cramér-Rao lower bound, i.e.

)

inf sup Eg(0 —0)> > 1+0(1).
0 9_ye[—ml/4m1/4] m]Je(6o)

4. Prior with smallest Fisher information. Show that the optimal density with a compact
support is a squared cosine density g : [—1,1] — R defined as g(u) = cos® % for all u €
[—1,1]. Further, show that the minimum Fisher information is

min J(g) = %

gon [—1,1]

5. Data processing inequality for f-divergence. For any Markov chain X — Y — Z, a pair
of measures Pxyz and Qxy z with common Markov kernel Pziy = QZ‘Y, a convex map
f:(0,00) — Ry, and arbitrary function g: X x Z — R, we have

D¢ (Px,y||Qx,y) = Ds(Px,z[|Qx,z) = D¢(Py(x,2) Qq(x,2))-

6. HCR for GLM. Consider an i.i.d. random vector X : () — X™ with the common probability
distribution Py = A(,1) with unknown mean 6 € R and known variance 1. Consider
the sample mean estimator §(X) £ Ly X;. Using the Hammersley-Chapman-Robbins
(HCR) lower bound, compute a lower bound for the variance of any unbiased estimator of
6, assuming you are comparing 6 and 6’ = 6 + § where J # 0.

(a) Given that Py and Py are Gaussian distributions, calculate x2(Py||Py) in terms of 4.

(b) Use the result from the x?-divergence to provide the HCR lower bound for the vari-
ance of any unbiased estimator of 6.

(c) Based on your results, if n = 10 and § = 0.1, what is the numerical lower bound for
the variance of the estimator 6?



