
Lecture-02: Review of Linear Algebra and Convex
Optimization

1 Review of Linear Algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping + : V ×
V → V defined by +(v,w) = v+w for any two elements v,w ∈ V, if this mapping satisfies the following
four axioms.

1. Associativity: For all vectors u,v,w ∈ V, we have u + (v + w) = (u + v) + w.
2. Commutativity: For all vectors u,v ∈ V, we have u + v = v + u.
3. Additive identity: There exists a zero vector 0 ∈ V, such that u + 0 = u for all u ∈ V.
4. Additive inverse: For each vector u ∈ V, there exists an additive inverse −u ∈ V such that u +

(−u) = 0.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition + : V × V → V is also
equipped with field scalar multiplication mapping · : F × V → V defined by ·(α,v) = αv ∈ V, if this
mapping satisfies the following four axioms.

1. Field compatibility: For all scalars α, β ∈ F and vector u ∈ V, we have α(βu) = (αβ)u.
2. Multiplicative identity: There exists a multiplicative identity element 1 ∈ F, such that 1u = u for

all u ∈ V.
3. Distributivity over vector addition: For each scalar α ∈F and vectors u,v ∈V, we have α(v+ u) =

αu + αv.
4. Distributivity over field addition: For all scalars α, β ∈ F and vector u ∈ V, we have (α + β)u =

αu + βu.

Definition 1.3. A vector space over the field F is a set V equipped with vector addition + : V × V → V
and scalar multiplication · : F × V → V.

Definition 1.4. A set of vectors W ⊆ V are called linearly independent, if for any nonzero vector α ∈ FW

with finite ∑w αw, we have ∑w∈W αww ̸= 0 ∈ V.

Definition 1.5. The span of a set of vectors W ⊆ V is defined by

Span(W)≜

{
∑

w∈W
αww : α ∈ RW , ∑

w∈W
αw finite

}
.

Definition 1.6. A basis of any vector space V, is a spanning set of linearly independent vectors.

Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.

Example 1.8 (Vector space). Following are some common examples of vector spaces.

1. Euclidean space of N-dimensions, denoted by RN .

2. Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).

3. Space of random variables defined over probability space (Ω,F, P) with finite pth moment de-
noted by Lp.
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1.2 Inner Product Space

A inner product space is a vector space equipped with an inner product denoted by ⟨·, ·⟩ : V ×V → R that
satisfies the following axioms.

1. Symmetry: For all vectors x,y ∈ V, we have ⟨x,y⟩ = ⟨y, x⟩.

2. Linearity: For all scalars α, β ∈ F and vectors x,y,z ∈ V, we have ⟨αx + βy,z⟩ = α ⟨x,z⟩+ β ⟨y,z⟩.

3. Definiteness: For all vectors x ∈ V, we have ⟨x, x⟩⩾ 0, and ⟨x, x⟩ = 0 iff x = 0.

Example 1.9 (inner product spaces). Following are some common examples of inner product spaces.

1. For the vector space V = RN of N-dimensional vectors, the inner product is defined as ⟨x,y⟩ ≜
xTy = ∑N

i xiyi.

2. For vector space V = C(RN) of continuous functions, the inner product is defined as ⟨ f , g⟩ ≜∫
RN ( f , g)(t)dt.

3. For the vector space of random variables, the inner product ⟨·, ·⟩ : Lp × Lq → R is defined as
⟨X,Y⟩≜ EXY for conjugate pairs p,q ⩾ 1 such that 1

p + 1
q = 1.

1.3 Norms

Definition 1.10. Norm is a mapping ∥·∥ : V → R+ that satisfy the following axioms.

1. Definiteness: For all vectors v ∈ V, we have ∥v∥ = 0 iff v = 0.

2. Homogeneity: For all scalars α ∈ R and vectors v ∈ V, we have ∥αv∥ = |α| ∥v∥.

3. Triangle inequality: For all vectors v,w ∈ V, we have ∥v + w∥⩽ ∥v∥+ ∥w∥.

Example 1.11 (Norms). Let p ⩾ 1, then following are common examples of p-norms.

1. For a vector space V = RN , we can define the p-norm as ∥x∥p ≜
(

∑N
i=1 |xi|p

) 1
p

for all x ∈ RN .

2. For vector space V = C(RN), the p-norm is defined as ∥ f ∥p ≜
(∫

RN | f |p (t)dt
) 1

p
for all f ∈ C(RN).

3. For vector space of random variables, the p-norm is defined as ∥X∥p ≜
(

E |X|p
) 1

p
for all X ∈ Lp.

Example 1.12 (Special norms). Let p ∈ {1,2,∞}, then following are common examples of p-norms.

1. Consider the vector space V = RN and x ∈ V. For p = 1, we have ∥x∥1 = ∑N
i=1 |xi|. For p = 2, the

norm is Euclidean norm such that ∥x∥2
2 = ⟨x, x⟩. For p = ∞, we have ∥x∥∞ = maxi |xi|.

2. Consider the vector space V = C(RN) and f ∈ V. For p = 1, we have ∥ f ∥1 =
∫

t∈RN | f | (t)dt. For
p = 2, the norm is Euclidean norm such that ∥ f ∥2

2 = ⟨ f , f ⟩ =
∫

t∈RN | f |2 (t)dt. For p = ∞, we have
∥ f ∥∞ = supt | f | (t).

3. Consider the vector space V of random variables and X ∈ V. For p = 1, we have ∥X∥1 = E |X|.
For p = 2, the norm is Euclidean norm such that ∥X∥2

2 = ⟨X, X⟩ = EX2. For p = ∞, we have
∥X∥∞ = supω |X| (ω).

Proposition 1.13 (Holder’s Inequality). Let p,q ⩾ 1 be a conjugate pair, i.e. 1
p + 1

q = 1. Then,

|⟨x,y⟩|⩽ ∥x∥p ∥y∥q for all x,y ∈ RN .

Proof. The Holder’s inequality is trivially true if x = 0 or y = 0. Hence, we assume that ∥x∥p ∥y∥q > 0,

and let a ≜ |xi |
∥x∥p

and b ≜ |y|i
∥y∥q

. We will use the Young’s inequality 1
p ap + 1

q bq ⩾ ab for all a,b > 0, that

implies that
|xi|p

p∥x∥p
p
+

|yi|q

q∥y∥q
q
⩾

|x|i |y|i
∥x∥p ∥y∥q

, for all i ∈ [N].

Since |⟨x,y⟩|⩽∑N
i=1 |xi| |yi|, we get the result by summing both sides over i ∈ [N] in the above inequality.
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2 Review of Convex Optimization

Let X⊆ RN for N ⩾ 1 and f : X→ R be a smooth function.

Definition 2.1 (Gradient). The gradient of function f at point x ∈ X is defined as the column vector
∇ f (x) ∈ RN , where the entry i ∈ [N] is defined as (∇ f (x))i ≜

∂ f
∂xi

(x).

Definition 2.2 (Hessian). The Hessian of function f at point x ∈ X is denoted by the matrix ∇2 f (x) ∈
RN×N , where the entry (i, j) ∈ [N]× [N] is defined as ∇2 fi,j(x)≜ ∂2 f

∂xi∂xj
(x).

Remark 1. Let f : RN → R be a smooth function over N-dimensional reals. Then, we can write its Taylor
series expansion around the neighborhood of x ∈ RN , in terms of the gradient vector ∇ f (x) ∈ RN and
the Hessian matrix ∇2 f (x) ∈ RN×N , as

f (y) = f (x) + ⟨∇ f (x), (y − x)⟩+ 1
2

〈
(y − x),∇2 f (x)(y − x)

〉
+ o(∥y − x∥2

2). (1)

Definition 2.3 (Stationary Point). A point x ∈ X is called a stationary point of f : X→ R, if f attains a
local extremum at x.

Remark 2. If f : X→ R is smooth, then ∇ f (x) = 0 at a stationary point x ∈ X.

2.1 Convexity

Definition 2.4 (Convex Set). A set X is called convex if for all x,y ∈ X and α ∈ [0,1], the convex combi-
nation αx + ᾱy ∈ X where ᾱ ≜ (1 − α).

Definition 2.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A, i.e.
conv(A)≜ {∑x∈A αxx : 0 ⩽ αx ⩽ 1,∑x∈A αx = 1} .

Definition 2.6. Let X⊆ RN . For a function f : X→ R, we define its epigraph as

Epi( f )≜ {(x,y) ∈ X× R : y ⩾ f (x)} .

Definition 2.7. A function f : X → R is convex if the associated domain X and epigraph Epi( f ) are
convex sets.

Theorem 2.8. Let X⊂ RN be a convex set. Then the following are equivalent statements.

1. f : X→ R is a convex function.

2. For all α ∈ [0,1], we have f (αx + (1 − α)y)⩽ α f (x) + (1 − α) f (y).

3. For differentiable f , we have f (y)− f (x)⩾ ⟨∇ f (x),y − x⟩ for all x,y ∈ X.

4. For twice differentiable f , we have ∇2 f ⪰ 0, i.e. ∇2 f is a positive semi-definite matrix.

Proof. For convex set X⊆ RN and a function f : X→ R, we will show that statement 1 implies statement
2, which implies statement 3, which implies statement 4, which implies statement 1.

1 =⇒ 2: Let (x, f (x)), (y, f (y))∈Epi( f ) for x,y ∈X. Let α ∈ [0,1], then from the convexity of X, we have
αx + ᾱy ∈ X. Further from the convexity of Epi( f ), we have (αx + ᾱy,α f (x) + ᾱ f (y)) ∈ Epi( f ).
That is, α f (x) + ᾱ f (y)⩾ f (αx + ᾱy).

2 =⇒ 3: Recall that αx + ᾱy = x + ᾱ(y − x). From statement 2, we have f (y)− f (x) ⩾ f (αx+ᾱy)− f (x)
ᾱ .

Taking ᾱ → 0, we observe that the right hand side is equal to ⟨∇ f (x),y − x⟩.

3 =⇒ 4: From (1) and statement 3, it follows that for any x,y ∈X f (y)− f (x)− ⟨∇ f (x),y − x⟩= 1
2 (y−

x)T∇2 f (x)(y − x) + o(∥y − x∥2
2)⩾ 0.
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4 =⇒ 1: Let α ∈ [0,1]. Then, it suffices to show that α f (x1) + ᾱ f (x2) ⩾ f (αx1 + ᾱx2). From the Taylor
expansion of f in the neighborhood of x2, we get

α( f (x1)− f (x2)) = α ⟨∇ f (x2), x1 − x2⟩+
α

2

〈
(x1 − x2),∇2 f (x2)(x1 − x2)

〉
+ o(∥x1 − x2∥2

2).

Similarly, we write the Taylor expansion of f in the neighborhood of x2, to get

f (αx1 + ᾱx2)− f (x2) = α ⟨∇ f (x2), x1 − x2⟩+
α2

2

〈
(x1 − x2),∇2 f (x2)(x1 − x2)

〉
+ o(∥x1 − x2∥2

2).

Taking the difference, we get α( f (x1)− f (x2))⩾ f (αx1 + ᾱx2)− f (x2).

Example 2.9 (Convex Function). Following functions f : RN → R are convex.

1. Linear Function: f (x) = ⟨w, x⟩ for each w ∈ RN .

2. Quadratic Function: f (x) = xT Ax for a positive semi definite matrix A ∈ RN×N .

3. Abs Maximum: f (x) = max{|xi| : i ∈ [N]} = ∥x∥∞.

Lemma 2.10 (Composition of functions). We define a composition function f = h ◦ g for functions h : R→R

and g : RN → R, by defining f (x)≜ h(g(x)) for all x ∈ RN . Then, the following statements are true.

1. If h is convex and nondecreasing and g is convex, then f is convex.

2. If h is convex and nonincreasing and g is concave, then f is convex.

3. If h is concave and nondecreasing and g is concave, then f is concave.

4. If h is concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff dom( f ) is convex and f (αx + ᾱy) ⩽
α f (x) + ᾱ f (y) for all α ∈ [0,1]. Recall that RN is convex for all N ⩾ 1. We will only show the first
statement, and rest follow the same steps. Let x,y ∈ RN and α ∈ [0,1]. From the convexity of g, we get
g(αx + ᾱy)⩽ αg(x) + ᾱg(y). From the nondecreasing property of h, we get h(g(αx + ᾱy))⩽ h(αg(x) +
ᾱg(y)). From the convexity of h, we get h(αg(x) + ᾱg(y))⩽ αh(g(x)) + ᾱh(g(y)).

Theorem 2.11 (Jensen’s Inequality). Let X : Ω →X⊆RN be a random vector with finite marginal means, and
f : X→ R be a convex function. Then the mean E[X] ∈ X, the mean E[ f (X)] is fnite, and f (E[X])⩽ E[ f (X)].

Proof. We will show this for simple random vector X : Ω → {x1, . . . , xm} ⊆ X, such that αi ≜ P{X = xi}
for all i ∈ [m]. Then, the mean EX = ∑m

i=1 αixi ∈ X from the convexity of X, and E f (X) = ∑m
i=1 αi f (xi) is

finite. Further, from the convexity of f , we get f
(

∑m
i=1 αixi

)
⩽ ∑m

i=1 αi f (xi).

Corollary 2.12 (Young’s inequality). Let p,q⩾ 1 be a conjugate pair such that 1
p +

1
q = 1. Then, ab⩽ ap

p + bq

q .

Proof. Take a random variable X : Ω →{ap,bq} with probability mass function PX(ap) = 1
p and PX(bq) =

1
q . Then, from the concavity of log

ln
(

1
p

ap +
1
q

bq
)
= lnEX ⩾ E ln X =

1
p

ln ap +
1
q

lnbq = ln ab.

Since ln(·) is an increasing function, the above inequality implies the result.
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2.2 Constrained Optimization

Problem 1 (Primal problem). Consider a cost function f : RN → R and a constraint function g : RN →
Rm. The primal problem is p∗ ≜ inf{ f (x) : x ∈ X} , where the constraint set is

X≜ ∩m
i=1

{
x ∈ RN : gi(x)⩽ 0

}
. (2)

Definition 2.13 (Lagrangian). For the Problem 1, we define an associated Lagrangian function L : RN ×
Rm

+ → R for Lagrange or dual variables α ∈ Rm
+ and primal variables x ∈ RN , as

L(x,α)≜ f (x) + ⟨α, g(x)⟩ . (3)

Definition 2.14 (Dual function). The dual function F : Rm
+ → R associated with the Problem 1 is defined

for dual variables α ∈ Rm
+ as

F(α)≜ inf
{
L(x,α) : x ∈ RN

}
. (4)

Theorem 2.15. The following are true for the dual function F : Rm
+ → R defined in (4) for the Problem 1.

1. F is concave in α ∈ Rm
+.

2. F(α)⩽ L(x,α) for all α ∈ Rm
+ and x ∈ RN .

3. F(α)⩽ p∗ for all α ∈ Rm
+.

Proof. Recall that L(α) = f (x) + ⟨α, g(x)⟩ is a linear function of α ∈ Rm
+, and F(α) = infx L(x,α).

1. Let β ∈ [0,1] and α1,α2 ∈ Rm
+ and x ∈ X. It follows from the linearity of Lagrangian in α that

F(βα1 + β̄α2) = inf
x

[
βL(x,α1) + β̄L(x,α2)

]
⩾ β inf

x
L(x,α1) + β̄ inf

x
L(x,α2) = βF(α1) + β̄F(α2).

2. From the definition of F, it follows that F(α)⩽ L(x,α) for all x ∈ RN .

3. Recall that gi(x)⩽ 0 for all x ∈ X, and hence ⟨α, g(x)⟩⩽ 0 for all x ∈ X. Therefore, F(α)⩽ f (x) for
all x ∈ X, and hence the result follows.

Problem 2. Dual problem The dual problem associated with primal problem defined in Problem 1 is

d∗ ≜ max{F(α) : α ∈ Rm
+} .

Remark 3. From the properties of dual function F : Rm
+ → R in Theorem 2.15, we obtain that F is concave

in α ∈ Rm
+. Since Rm

+ is a convex set, it follows that the dual problem is convex. We further observe that
the optimal value of dual problem d∗ ⩽ p∗. The difference of optimal values (p∗ − d∗) is called the
duality gap. For a primal problem, the strong duality holds if the duality gap is zero, or d∗ = p∗.

2.3 Convex constrained optimization

Definition 2.16 (Saddle point). For a Lagrangian L : RN × Rm
+ → R, a saddle point (x∗,α∗) sastifies

sup
α∈Rm

+

L(x∗,α)⩽ L(x∗,α∗)⩽ inf
x∈RN

L(x,α∗).

Theorem 2.17 (Sufficient condition). For the primal problem defined in Problem 1, if (x∗,α∗) is a saddle point
of the associated Lagrangian L, then x∗ ∈ X and p∗ = f (x∗) = F(α∗).

Proof. Let (x∗,α∗) be the saddle point of the Lagrangian L associated with the Problem 1. From the
definition of dual function F, we get that L(x∗,α∗)⩽ F(α∗)⩽L(x∗,α∗). It follows that F(α∗) =L(x∗,α∗).

Recall that L(x∗,α) = f (x∗) + ⟨α, g(x∗)⟩. We assume that there exists an i ∈ [m] such that gi(x) >
0, then we can take αi large enough so that L(x∗,α) ⩾ L(x∗,α∗). This contradicts the saddle point
condition, and hence x∗ ∈ X. Therefore ⟨α, g(x∗)⟩ ⩽ 0 for all α ∈ Rm

+. This implies that ⟨α∗, g(x∗)⟩ = 0
and hence p∗ = f (x∗) = F(α∗).
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Definition 2.18 (Strong constraint qualification). The strong constraint qualification or Slater’s condi-
tion is defined as the existence of a point x ∈ Xo such that gi(x) < 0 for all i ∈ [m].

Theorem 2.19 (Strong necessary condition). Let the cost function f and constraints gi for i ∈ [m] be convex
functions, such that the Slater’s condition holds, and x∗ be the solution of the Problem 1 . Then, there exists
α∗ ∈ Rm

+ such that (x∗,α∗) is a saddle point of the associated Lagrangian L.

Definition 2.20. A function h : X→ R is said to be affine if it can be defined as x 7→ h(x)≜ ⟨w, x⟩+ b for
all x ∈ X⊆ RN and some w ∈ RN and b ∈ R.

Definition 2.21 (Weak constraint qualification). The weak constraint qualification or weak Slater’s
condition is defined as the existence of a point x ∈ Xo such that for each i ∈ [m] either gi(x) < 0 or
gi(x) = 0 and gi affine.

Theorem 2.22 (Weak necessary condition). Let the cost function f and constraints gi for i ∈ [m] be convex
differentiable functions, such that the weak Slater’s condition holds, and x∗ be the solution of the Problem 1 .
Then, there exists α∗ ∈ Rm

+ such that (x∗,α∗) is a saddle point of the associated Lagrangian L.

Remark 4. The strong duality holds when the primal problem is convex with qualifying constraints.

Theorem 2.23 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions gi for all
i ∈ [m] be convex and differentiable functions, such that the constraints are qualified. Then x∗ ∈ RN is a solution
of the constrained problem iff there exists α∗ ∈ Rm

+ such that

∇xL(x∗,α∗) =∇x f (x∗) +
m

∑
i=1

α∗i ∇xgi(x∗) = 0, ∇αiL(x∗,α∗) = gi(x∗)⩽ 0, i ∈ [m],
m

∑
i=1

α∗i gi(x∗) = 0.

Proof. We will first assume that x∗ ∈ X is solution of the constrained problem and show that the there
exists α∗ ∈ Rm

+ such that the three conditions are met. From the definition of Lagrangian L, we have

∇xL(x∗,α∗) =∇x f (x∗) +
m

∑
i=1

α∗i ∇xgi(x∗).

From the necessary condition theorem, it follows that if x∗ ∈ X is a solution to the primal problem, then
there exists dual variables α∗ ∈ Rm

+ such that (x∗,α∗) is a saddle point of the Lagrangian. It follows
that ∇xL(x∗,α∗) = 0 and the first condition holds. Since x∗ ∈ X, it follows that the second condition
gi(x∗)⩽ 0 holds for all i ∈ [m]. Since (x∗,α∗) is a saddle point of the Lagrangian, we have for any α ∈ Rm

+

L(x∗,α∗) = f (x∗) +
m

∑
i=1

α∗i gi(x∗)⩾ f (x∗) +
m

∑
i=1

αigi(x∗).

This implies that −∑m
i=1 α∗i gi(x∗)⩽ infα∈Rm

+
−∑m

i=1 αigi(x∗) = 0.
Conversely, let (x∗,α∗) ∈ RN ×Rm

+ be such that all three KKT conditions are met. We will show that
f (x)⩾ f (x∗) for all x ∈ X. We first observe from the convexity of f , that for any x ∈ RN, we have

f (x)− f (x∗)⩾ ⟨∇x f (x∗), x − x∗⟩ .

From the first condition, we get ⟨∇x f (x∗), x − x∗⟩ = −∑m
i=1 α∗i ⟨∇xgi(x∗), x − x∗⟩. From the convexity

of gi for all i ∈ [m] and the third condition, we have

−
m

∑
i=1

α∗i ⟨∇xgi(x∗), x − x∗⟩⩾−
m

∑
i=1

α∗i (gi(x)− gi(x∗)) = −
m

∑
i=1

α∗i gi(x).

Recall that gi(x) ⩽ 0 for all x ∈ X and i ∈ [m]. Thus, combining all these inequalities, we get f (x) −
f (x∗)⩾ 0 for all x ∈ X.
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