
Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Definition 1.1. For any PDS kernel k : X×X→ R, we can define a kernel evaluation map ex : X→ R at
a point x ∈ X by ex(x′)≜ k(x, x′) for all x′ ∈ X.

Definition 1.2. We can define a pre-Hilbert space H0 as the span of kernel evaluations defined in Defi-
nition 1.1, at finitely many elements of X. That is,

H0 ≜

{
∑
x∈I

axex : finite I ⊆ X, a ∈ RI

}
⊆ RX.

The completion of H0 is a complete Hilbert space denoted by H ≜ H and called the reproducing kernel
Hilbert space associated with kernel k.

Remark 1. Since ex ∈ RX, it follows that H0 ⊆ H ⊆ RX. We observe that H0 is dense in H. By definition,
we have ex ∈ H for any x ∈ X.

Definition 1.3. Then, we define a map ⟨·, ·⟩ : H0 × H0 → R defined for all f , g ∈ H0 such that f =
∑x∈I axex and g = ∑y∈J byey, as

⟨ f , g⟩H0
≜ ∑

x∈I
∑
y∈J

axbyk(x,y) = ∑
y∈J

by f (y) = ∑
x∈I

axg(x).

Lemma 1.4. The map ⟨⟩ : H0 × H0 → R defined in Definition 1.3 for any PDS kernel k : X× X → R is an
inner product.

Proof. We can verify that the map ⟨·, ·⟩ : H0 × H0 → R has the follow three properties.

1. Symmetry: By definition, ⟨·, ·⟩ is symmetric.

2. Bilinearity: From symmetry, it suffices to show that ⟨·, ·⟩ is linear in its first argument. Let α, β ∈ R

and f , g, h ∈H0 such that f = ∑z∈I axex, g = ∑y∈J byey, h = ∑z∈K czez. For simplicity, we assume that
I and J are disjoint. We observe that α f + βg = ∑x∈I∪J(αax1{x∈I} + βbx1{x∈J})ex. It follows that

⟨α f + βg, h⟩ = ∑
x∈I∪J

∑
z∈K

(αax1{x∈I} + βbx1{x∈J})czk(x,z) = α ⟨ f , h⟩+ β ⟨g, h⟩ .

3. Positive semi-definiteness: We will show that for any f ∈ H0 that can be written as f = ∑x∈I axex,
we have ⟨ f , f ⟩⩾ 0. Recall that for any PDS kernel k and sample I, the associated gram matrix K is
symmetric and positive semidefinite. It follows that for any column vector a ∈ RI , we have

⟨ f , f ⟩ = ∑
x,y

axk(x,y)ay = aTKa ⩾ 0.

It follows that ⟨⟩ is an inner product on pre-Hilbert space H0.

Theorem 1.5 (RKHS). Let k : X×X→ R be a PDS kernel. Then, there exists a Hilbert space H and a mapping
Φ : X→ H such that for all x, x′ ∈ X,

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
H

.

Furthermore, H has the following reproducing property, h(x) = ⟨(h(·),k(x, ·)⟩H for all h ∈ H and x ∈ X.
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Proof. We define a feature map Φ : X→ H as Φ(x) ≜ ex for all x ∈ X, where ex is the kernel evaluation
map defined in Definition 1.1 associated with PDS kernel k. It follows that Φ(x) ∈ H ⊆ RX from Re-
mark 1. From definition, it follows that [Φ(x)](x′) = k(x, x′) for all x′ ∈ X. From the definition of inner
product on pre-Gilbert space H0, we observe that for all x, x′ ∈ X,〈

Φ(x),Φ(x′)
〉
= ⟨ex, ex′⟩ = k(x, x′).

We can verify that the inner product ⟨·, ·⟩ : H0 × H0 → R has the following two additional properties.

1. Reproducing property: Consider a kernel evaluation map ex′ ∈ H and f ∈ H0 such that f =
∑x∈I axex for any finite I ⊆ X and a ∈ RI . Then,

⟨ f , ex′⟩ = ∑
x∈I

axk(x, x′) = ∑
x∈I

axex(x′) = f (x′).

2. Definiteness: From the Cauchy-Schwarz inequality for inner products and reproducing property
of H, we observe that for any f ∈ H0 and x ∈ X,

| f (x)|2 = |⟨ f , ex⟩|2 ⩽ ⟨ f , f ⟩ ⟨ex, ex⟩ = (aTKa)k(x, x).

It follows that f (x) is bounded for any f ∈ H0 and x ∈ X.

Since ⟨⟩ is an inner product on H0 which is bounded, it follows that H0 is a pre-Hilbert space which
can be made complete to form the Hilbert space H ≜ H0, where H0 is dense in H.

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combina-
tion of the functions k(xi, ·), where xi is a sample point. The following theorem known as the representer
theorem shows that this is in fact a general property that holds for a broad class of optimization prob-
lems, including that of SVMs with no offset.

Theorem 1.6 (Representer theorem). Let k : X× X → R be a PDS kernel with associated kernel evaluation
map ex for any x ∈ X and corresponding RKHS H. Then, for any non decreasing function G : R → R and any
loss function L : Rm → R ∪ {+∞} , the optimization problem

argmin
h∈H

F(h) = argmin
h∈H

G(∥h∥H) + L(h(x1), . . . , h(xm)),

has a solution of the form h∗ = ∑m
i=1 αiexi . If G is strictly increasing, then any solution has this form.

Proof. Let H1 = span(exi : i ∈ [m]). We can write the RKHS H as the direct sum of span of H1 and the
orthogonal space H⊥

1 , i.e. H = H1 ⊕ H⊥
1 . Hence, any hypothesis h ∈ H, can be written as h = h1 + h⊥1 .

Since G is non-decreasing

G(∥h1∥H)⩽ G(

√
∥h1∥2

H +
∥∥h⊥1

∥∥2
H
) = G(∥h∥H).

By the reproducing property, we have h(xi) = ⟨h, exi ⟩ = ⟨h1, exi ⟩ = h1(xi) for all i ∈ [m]. Therefore,
L(h(x1), . . . , h(xm)) = L(h1(x1), . . . , h1(xm)), and hence F(h1) ⩽ F(h). If G is strictly increasing, then
F(h1) < F(h) when

∥∥h⊥1
∥∥

H
> 0 and any solution of the optimization problem must be in H1.

2 Empirical kernel map

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed. Following
are the advantages of working with explicit feature map Φ.

(i) For primal method in various optimization problems.
(ii) To derive an approximation based on Φ.

(iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x ∈ Xm and a PDS kernel
k, the associated empirical kernel map E : X→ Rm is a feature mapping defined for all y ∈ X by

E(y)≜

 k(y, x1)
...

k(y, xm)

 .
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Remark 2. The empirical kernel map evaluated at a point y ∈ X is the vector of k-similarity measure of y
with each of the m training points.

Remark 3. For any i ∈ [m], we have E(xi) = KTei = Kei, where ei is the ith unit vector. Hence,
〈
Kei,Kej

〉
=〈

ei,K2ej
〉

. That is, the kernel matrix associated with the empirical kernel map E is K2.

Definition 2.2. Let K† denote the pseudo-inverse of the gram matrix K and let (K†)
1
2 denote the SPSD

matrix whose square is K†. We define a feature map F : X→ Rm using the empirical kernel map E and
the matrix (K†)

1
2 for all y ∈ X, as

F(y)≜ (K†)
1
2 E(y).

Remark 4. Using the identity KK†K = K, we see that〈
F(xi), F(xj)

〉
=

〈
(K†)

1
2 E(xi), (K†)

1
2 E(xj)

〉
=

〈
Kei,K†Kej

〉
=

〈
ei,Kej

〉
.

Thus, the kernel matrix associated to map F is K.

Remark 5. For the feature mapping G : X→ Rm defined by G(x) ≜ K†E(x) for all x ∈ X, we check that
the 〈

G(xi), G(xj)
〉
=

〈
K†E(xi),K†E(xj)

〉
=

〈
Kei,K†ej

〉
=

〈
ei,KK†ej

〉
.

Thus, the kernel matrix associated to map G is KK†.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature
mapping Φ. Recall that k(y,z) = ⟨Φ(y),Φ(z)⟩H for all y,z ∈ X, and hence the gram matrix K generated
by the kernel map k and the unlabeled training sample x ∈ Xm suffices to describe the SVM solution
completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y ∈ Rm as x ◦ y ∈
Rm such that (x ◦ y)i ≜ xiyi for all i ∈ [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space
H as

max
α

1Tα − 1
2
(α ◦ y)TK(α ◦ y)

subject to: 0 ⩽ α ⩽ C and αTy = 0.

The solution hypothesis h can be written as h(x) = sign (∑m
i=1 αiyik(xi, x) + b) , where b = yi − (α ◦ y)TKei

for all xi such that 0 < αi < C.
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