Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Definition 1.1. For any PDS kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, we can define a kernel evaluation map $e_x: \mathcal{X} \to \mathbb{R}$ at a point $x \in \mathfrak{X}$ by $e_x(x') \triangleq k(x, x')$ for all $x' \in \mathfrak{X}$.

Definition 1.2. We can define a pre-Hilbert space H_0 as the span of kernel evaluations defined in Defi-nition [1.1,](#page-0-0) at finitely many elements of X . That is,

$$
\mathbb{H}_0 \triangleq \left\{ \sum_{x \in I} a_x e_x : \text{ finite } I \subseteq \mathfrak{X}, a \in \mathbb{R}^I \right\} \subseteq \mathbb{R}^{\mathfrak{X}}.
$$

The completion of \mathbb{H}_0 is a complete Hilbert space denoted by $\mathbb{H} \triangleq \overline{\mathbb{H}}$ and called the *reproducing kernel Hilbert space* associated with kernel *k*.

Remark 1. Since $e_x \in \mathbb{R}^{\mathcal{X}}$, it follows that $\mathbb{H}_0 \subseteq \mathbb{H} \subseteq \mathbb{R}^{\mathcal{X}}$. We observe that \mathbb{H}_0 is dense in \mathbb{H} . By definition, we have $e_x \in \mathbb{H}$ for any $x \in \mathcal{X}$.

Definition 1.3. Then, we define a map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ defined for all $f, g \in \mathbb{H}_0$ such that $f =$ $\sum_{x \in I} a_x e_x$ and $g = \sum_{y \in J} b_y e_y$, as

$$
\langle f,g \rangle_{\mathbb{H}_0} \triangleq \sum_{x \in I} \sum_{y \in J} a_x b_y k(x,y) = \sum_{y \in J} b_y f(y) = \sum_{x \in I} a_x g(x).
$$

Lemma 1.4. *The map* $\langle \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ *defined in Definition* [1.3](#page-0-1) *for any PDS kernel* $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ *is an inner product.*

Proof. We can verify that the map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ has the follow three properties.

- 1. **Symmetry**: By definition, $\langle \cdot, \cdot \rangle$ is symmetric.
- 2. **Bilinearity**: From symmetry, it suffices to show that $\langle \cdot, \cdot \rangle$ is linear in its first argument. Let $\alpha, \beta \in \mathbb{R}$ and f , g , $h \in H_0$ such that $f = \sum_{z \in I} a_x e_x$, $g = \sum_{y \in J} b_y e_y$, $h = \sum_{z \in K} c_z e_z$. For simplicity, we assume that *I* and *J* are disjoint. We observe that $\alpha f + \beta g = \sum_{x \in I \cup J} (\alpha a_x 1\!\!1_{\{x \in I\}} + \beta b_x 1\!\!1_{\{x \in J\}}) e_x$. It follows that

$$
\langle \alpha f + \beta g, h \rangle = \sum_{x \in I \cup J} \sum_{z \in K} (\alpha a_x 1_{\{x \in I\}} + \beta b_x 1_{\{x \in J\}}) c_z k(x, z) = \alpha \langle f, h \rangle + \beta \langle g, h \rangle.
$$

3. **Positive semi-definiteness**: We will show that for any $f \in H_0$ that can be written as $f = \sum_{x \in I} a_x e_x$, we have $\langle f, f \rangle \ge 0$. Recall that for any PDS kernel *k* and sample *I*, the associated gram matrix *K* is symmetric and positive semidefinite. It follows that for any column vector $a \in \mathbb{R}^I$, we have

$$
\langle f, f \rangle = \sum_{x,y} a_x k(x,y) a_y = a^T K a \geqslant 0.
$$

It follows that $\langle \rangle$ is an inner product on pre-Hilbert space \mathbb{H}_0 .

Theorem 1.5 (RKHS). Let $k:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ be a PDS kernel. Then, there exists a Hilbert space \mathbb{H} and a mapping $\Phi: \mathfrak{X} \to \mathbb{H}$ *such that for all* $x, x' \in \mathfrak{X}$ *,*

$$
k(x,x') = \langle \Phi(x), \Phi(x') \rangle_{\mathbb{H}}.
$$

Furthermore, **H** has the following reproducing property, $h(x) = \langle (h(\cdot), k(x, \cdot) \rangle_{\mathbb{H}}$ for all $h \in \mathbb{H}$ and $x \in \mathcal{X}$.

 \Box

Proof. We define a feature map $\Phi : \mathcal{X} \to \mathbb{H}$ as $\Phi(x) \triangleq e_x$ for all $x \in \mathcal{X}$, where e_x is the kernel evaluation map defined in Definition [1.1](#page-0-0) associated with PDS kernel *k*. It follows that $\Phi(x) \in \mathbb{H} \subseteq \mathbb{R}^{\mathcal{X}}$ from Re-mark [1.](#page-0-2) From definition, it follows that $[\Phi(x)](x') = k(x, x')$ for all $x' \in \mathcal{X}$. From the definition of inner product on pre-Gilbert space \mathbb{H}_0 , we observe that for all $x, x' \in \mathcal{X}$,

$$
\langle \Phi(x), \Phi(x') \rangle = \langle e_x, e_{x'} \rangle = k(x, x').
$$

We can verify that the inner product $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \to \mathbb{R}$ has the following two additional properties.

1. **Reproducing property:** Consider a kernel evaluation map $e_{x'} \in \mathbb{H}$ and $f \in \mathbb{H}_0$ such that $f =$ $\sum_{x \in I} a_x e_x$ for any finite $I \subseteq \mathcal{X}$ and $a \in \mathbb{R}^I$. Then,

$$
\langle f,e_{x'}\rangle=\sum_{x\in I}a_xk(x,x')=\sum_{x\in I}a_xe_x(x')=f(x').
$$

2. **Definiteness**: From the Cauchy-Schwarz inequality for inner products and reproducing property of **H**, we observe that for any $f \in \mathbb{H}_0$ and $x \in \mathcal{X}$,

$$
|f(x)|^2 = |\langle f, e_x \rangle|^2 \leq \langle f, f \rangle \langle e_x, e_x \rangle = (a^T K a) k(x, x).
$$

It follows that *f*(*x*) is bounded for any *f* ∈ **H**₀ and *x* ∈ *X*.

Since $\langle \rangle$ is an inner product on H_0 which is bounded, it follows that H_0 is a pre-Hilbert space which can be made complete to form the Hilbert space $H \triangleq \overline{H}_0$, where H_0 is dense in H. \Box

1.1 Representer theorem

Observe that modulo the offset *b*, the hypothesis solution of SVMs can be written as a linear combination of the functions $k(x_i, \cdot)$, where x_i is a sample point. The following theorem known as the representer theorem shows that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs with no offset.

Theorem 1.6 (Representer theorem). Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel with associated kernel evaluation *map* e_x *for any* $x \in \mathcal{X}$ *and corresponding RKHS H. Then, for any non decreasing function* $G : \mathbb{R} \to \mathbb{R}$ *and any loss function* $L : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$, *the optimization problem*

$$
\arg\min_{h\in\mathbb{H}} F(h) = \arg\min_{h\in\mathbb{H}} G(||h||_{\mathbb{H}}) + L(h(x_1),...,h(x_m)),
$$

has a solution of the form $h^* = \sum_{i=1}^m \alpha_i e_{x_i}$ *. If G is strictly increasing, then any solution has this form.*

Proof. Let $\mathbb{H}_1 = \text{span}(e_{x_i} : i \in [m])$. We can write the RKHS \mathbb{H} as the direct sum of span of \mathbb{H}_1 and the orthogonal space \mathbb{H}_1^{\perp} , i.e. $\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}_1^{\perp}$. Hence, any hypothesis $h \in \mathbb{H}$, can be written as $h = h_1 + h_1^{\perp}$. Since *G* is non-decreasing

$$
G(||h_1||_{\mathbb{H}}) \leqslant G(\sqrt{||h_1||_{\mathbb{H}}^2 + ||h_1^{\perp}||_{\mathbb{H}}^2}) = G(||h||_{\mathbb{H}}).
$$

By the reproducing property, we have $h(x_i) = \langle h, e_{x_i} \rangle = \langle h_1, e_{x_i} \rangle = h_1(x_i)$ for all $i \in [m]$. Therefore, $L(h(x_1),...,h(x_m)) = L(h_1(x_1),...,h_1(x_m))$, and hence $F(h_1) \leq F(h)$. If G is strictly increasing, then $F(h_1)$ \lt *F*(*h*) when $\|h_1^{\perp}\|_H$ > 0 and any solution of the optimization problem must be in \mathbb{H}_1 .

2 Empirical kernel map

Advantages of working with kernel is that no explicit definition of a feature map Φ is needed. Following are the advantages of working with explicit feature map Φ.

- (i) For primal method in various optimization problems.
- (ii) To derive an approximation based on Φ.
- (iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample $x \in \mathcal{X}^m$ and a PDS kernel *k*, the associated **empirical kernel map** $E: \mathcal{X} \to \mathbb{R}^m$ is a feature mapping defined for all $y \in \mathcal{X}$ by

$$
E(y) \triangleq \begin{bmatrix} k(y,x_1) \\ \vdots \\ k(y,x_m) \end{bmatrix}.
$$

Remark 2. The empirical kernel map evaluated at a point $y \in \mathcal{X}$ is the vector of *k*-similarity measure of *y* with each of the *m* training points.

Remark 3. For any $i \in [m]$, we have $E(x_i) = K^T e_i = Ke_i$, where e_i is the *i*th unit vector. Hence, $\langle Ke_i, Ke_j \rangle =$ $\langle e_i, K^2 e_j \rangle$. That is, the kernel matrix associated with the empirical kernel map *E* is K^2 .

Definition 2.2. Let K^{\dagger} denote the pseudo-inverse of the gram matrix *K* and let $(K^{\dagger})^{\frac{1}{2}}$ denote the SPSD matrix whose square is K^{\dagger} . We define a feature map $F: \tilde{\mathfrak{X}} \to \mathbb{R}^m$ using the empirical kernel map E and the matrix $(K^{\dagger})^{\frac{1}{2}}$ for all $y \in \mathcal{X}$, as

$$
F(y) \triangleq (K^{\dagger})^{\frac{1}{2}} E(y).
$$

Remark 4*.* Using the identity $KK^{\dagger}K = K$, we see that

$$
\langle F(x_i), F(x_j) \rangle = \langle (K^{\dagger})^{\frac{1}{2}} E(x_i), (K^{\dagger})^{\frac{1}{2}} E(x_j) \rangle = \langle K e_i, K^{\dagger} K e_j \rangle = \langle e_i, K e_j \rangle.
$$

Thus, the kernel matrix associated to map *F* is *K*.

Remark 5. For the feature mapping $G: \mathcal{X} \to \mathbb{R}^m$ defined by $G(x) \triangleq K^{\dagger}E(x)$ for all $x \in \mathcal{X}$, we check that the D

$$
\langle G(x_i), G(x_j) \rangle = \langle K^{\dagger} E(x_i), K^{\dagger} E(x_j) \rangle = \langle K e_i, K^{\dagger} e_j \rangle = \langle e_i, K K^{\dagger} e_j \rangle.
$$

Thus, the kernel matrix associated to map *G* is *KK*† .

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space **H** mapped by the feature mapping Φ . Recall that $k(y, z) = \langle \Phi(y), \Phi(z) \rangle$ for all $y, z \in \mathcal{X}$, and hence the gram matrix *K* generated by the kernel map *k* and the unlabeled training sample $x \in \mathcal{X}^m$ suffices to describe the SVM solution completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors $x, y \in \mathbb{R}^m$ as $x \circ y \in$ \mathbb{R}^m such that $(x \circ y)_i \triangleq x_i y_i$ for all $i \in [m]$.

Remark 6*.* We can write the dual problem for non-separable training data in this high dimensional space **H** as

$$
\max_{\alpha} \mathbf{1}^T \alpha - \frac{1}{2} (\alpha \circ y)^T K (\alpha \circ y)
$$

subject to: $0 \le \alpha \le C$ and $\alpha^T y = 0$.

The solution hypothesis h can be written as $h(x) = sign(\sum_{i=1}^{m} \alpha_i y_i k(x_i, x) + b)$, where $b = y_i - (\alpha \circ y)^T K e_i$ for all x_i such that $0 < \alpha_i < C$.