Lecture-06: Reproducing Kernel Hilbert Space (RKHYS)

1 Reproducing Kernel Hilbert Space (RKHS)

Definition 1.1. For any PDS kernel k : X x X — IR, we can define a kernel evaluation map e, : X — R at

a point x € X by ey(x') £ k(x,x’) for all x' € X.

Definition 1.2. We can define a pre-Hilbert space IHj as the span of kernel evaluations defined in Defi-
nition[1.1} at finitely many elements of X. That is,

Hy = {Zaxex: finite I C X,a € IRI} CRY.
xel

The completion of Hy is a complete Hilbert space denoted by H = H and called the reproducing kernel
Hilbert space associated with kernel k.

Remark 1. Since e, € R¥, it follows that Hy C H C RX. We observe that H is dense in H. By definition,
we have ey € H for any x € X.

Definition 1.3. Then, we define a map (-,-) : Hy x Hg — R defined for all f,g € Hy such that f =
Y ceraxexand g = Zyej byey, as

(181, = Y Y axbyk(x,y) = Y by f(y) = ) axg(x).

xelye] ye] xel

Lemma 1.4. The map () : Hy x Ho — R defined in Definition [1.3|for any PDS kernel k : X x X — R is an
inner product.

Proof. We can verify that the map (-,-) : Hy x Hy — R has the follow three properties.
1. Symmetry: By definition, (-,-) is symmetric.

2. Bilinearity: From symmetry, it suffices to show that (-, -) is linear in its first argument. Leta, € R
and f,g,h € Hosuchthat f =} ,cjaxex,§ =Y ey byey, h =} cx cze;. For simplicity, we assume that
I and ] are disjoint. We observe that af + Bg = Y requy(@axLixery + Bbxlixeyy)ex. It follows that

(af +Bgh) =Y. Y (aaxlpgery + Bbxlivepy)czk(x,2) = a(f,h) + B(g,h).

xelUJzeK

3. Positive semi-definiteness: We will show that for any f € H that can be writtenas f =) < axey,
we have (f, f) > 0. Recall that for any PDS kernel k and sample I, the associated gram matrix K is
symmetric and positive semidefinite. It follows that for any column vector a € R!, we have

(f.f) =Y ak(x,y)ay =a"Ka > 0.
Y

It follows that () is an inner product on pre-Hilbert space Hy. O

Theorem 1.5 (RKHS). Let k: X x X — R be a PDS kernel. Then, there exists a Hilbert space IH and a mapping
® : X — H such that for all x,x’ € X,

k(x,x") = (®(x), D(x") )y -

Furthermore, H has the following reproducing property, h(x) = ((h(-),k(x,-))yy forallh € Hand x € X.



Proof. We define a feature map ® : X — H as ®(x) £ ¢, for all x € X, where e, is the kernel evaluation
map defined in Definition associated with PDS kernel k. It follows that ®(x) € H C RY from Re-
mark|[l} From definition, it follows that [®(x)](x") = k(x,x’) for all x’ € X. From the definition of inner
product on pre-Gilbert space Hy, we observe that for all x,x’ € X,

(@(x),@(x")) = (ex,e0) = k(x,x").
We can verify that the inner product (-, -) : Hy x Hp — R has the following two additional properties.

1. Reproducing property: Consider a kernel evaluation map e,y € H and f € Hy such that f =
Y reraxex for any finite ] C X and a € R!. Then,

(frex) = Zaxk(x,x’) = Zaxex(x’) :f(x/)~

xel xel

2. Definiteness: From the Cauchy-Schwarz inequality for inner products and reproducing property
of H, we observe that for any f € Hp and x € X,

FIP = [{frex) P < (ff) (exsex) = (a7 Ka)k(x, ).
It follows that f(x) is bounded for any f € Hp and x € X.

Since () is an inner product on Hy which is bounded, it follows that Hy is a pre-Hilbert space which
can be made complete to form the Hilbert space H £ TH,, where Hj is dense in H. O

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combina-
tion of the functions k(x;, -), where x; is a sample point. The following theorem known as the representer
theorem shows that this is in fact a general property that holds for a broad class of optimization prob-
lems, including that of SVMs with no offset.

Theorem 1.6 (Representer theorem). Lef k: X x X — R be a PDS kernel with associated kernel evaluation
map ey for any x € X and corresponding RKHS H. Then, for any non decreasing function G : R — R and any
loss function L : R™ — R U {+co}, the optimization problem

inF(h) = inG(||h L(h . h ,
argmin F() = argminG([lgy) + L(h(x1), ..., h(xn))

has a solution of the form h* = Y_[" | w;ey,. If G is strictly increasing, then any solution has this form.

Proof. Let H;y = span(ey, : i € [m]). We can write the RKHS H as the direct sum of span of H; and the
orthogonal space Hy-, i.e. H = H; & Hj. Hence, any hypothesis & € H, can be written as = hy + h.
Since G is non-decreasing

Gl ller) < GO/ Il + 12 = G-

By the reproducing property, we have h(x;) = (h,ey,) = (h1,ex;) = h1(x;) for all i € [m]. Therefore,
L(h(x1),...,h(xp)) = L(h1(x1),...,h1(xm)), and hence F(hy) < F(h). If G is strictly increasing, then
F(h1) < F(h) when ||hi ||;; > 0 and any solution of the optimization problem must be in Hj. 0O

2 Empirical kernel map

Advantages of working with kernel is that no explicit definition of a feature map @ is needed. Following
are the advantages of working with explicit feature map .

(i) For primal method in various optimization problems.

(if) To derive an approximation based on ®.
(iif) Theoretical analysis where ® is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x € X" and a PDS kernel
k, the associated empirical kernel map E : X — R" is a feature mapping defined for all y € X by
k(y,x1)

Ey)=|
k(y, xm)



Remark 2. The empirical kernel map evaluated at a point y € X is the vector of k-similarity measure of y
with each of the m training points.

Remark 3. For any i € [m], we have E(x;) = KTe; = Ke;, where ¢; is the ith unit vector. Hence, <Kei,Kej> =
<ei,Kzej> . That is, the kernel matrix associated with the empirical kernel map E is K.

Definition 2.2. Let K denote the pseudo-inverse of the gram matrix K and let (K*)% denote the SPSD
matrix whose square is K. We define a feature map F : X — IR™ using the empirical kernel map E and

the matrix (K+)% forally € X, as
1
F(y) = (K")2E(y).
Remark 4. Using the identity KKK = K, we see that

(F(x;),F(x})) = <(1<*)%E(xi),(1<+)%}5(x]-)> = <Kei,K+Ke]-> — (ei,Kej).

Thus, the kernel matrix associated to map F is K.

Remark 5. For the feature mapping G : X — R™ defined by G(x) £ K'E(x) for all x € X, we check that
the
<G(xi),G(xj)> = <K+E(Xi),K+E(X]')> = <K6i,K+€]’> = <61',KK+€]'> .

Thus, the kernel matrix associated to map G is KK.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature
mapping ®. Recall that k(y,z) = (®(y), P(z))y for all y,z € X, and hence the gram matrix K generated
by the kernel map k and the unlabeled training sample x € X suffices to describe the SVM solution
completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y € R™ as x oy €
R™ such that (x o y); = x;y; for all i € [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space
H as

1
max1’a — E(rx oy)TK(aoy)
13
subject to: 0 < a < Cand a’y = 0.

The solution hypothesis / can be written as /1(x) = sign (Y ; a;yik(x;,x) + b), where b =y; — (x oy) T Ke;
for all x; such that 0 < a; < C.



	Reproducing Kernel Hilbert Space (RKHS)
	Representer theorem

	Empirical kernel map
	Kernel-based algorithms

