Lecture-07: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C C YX is said to be PAC-learnable if there exists an
algorithm A and a polynomial function poly(-,-,-,-) such that for (a) any €, > 0, (b) any distribution
D € M(X), (c) any target concept ¢ € C, (c) any hypothesis h, returned by the algorithm A, and (d)
any sample z € (X x Y)™ of size m > poly (1, 1,n,size(c)) generated under distribution D, the following
holds

P{R(h;) <e}>=1-04.

If A further runs in poly(1,1,n,size(c)), then C is said to be efficiently PAC-learnable. When such an
algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. The cost of computational representation of an input vector x € X is of order 7, and of a
concept c is of order size(c).

Remark 2. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after
observing a sample of size polynomial in % and % is approximately correct (error at most €) with high
probability (at least 1 — ), which justifies the PAC terminology. The § > 0 is used to define the confi-
dence 1 — J and € > 0 the accuracy 1 —e.

Remark 3. Note that if the running time of the algorithm is polynomial in % and %, then the sample size
m must also be polynomial if the full sample is received by the algorithm.

Remark 4. The following statements are true for the PAC framework.
1. Itis a distribution-free model.
2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets

Consider a binary classification problem where Y = {0,1} and a target concept c € C C Y¥ such that
y = c(x) for any labeled example. Let H C Y be a finite set of hypothesis functions for binary classifi-
cation with loss function £: X x Y = 1yj(y)+,}, and consider an i.i.d. sample z € (X x Y)™. In this case

for a hypothesis h € H and sample z, empirical risk is R(h) = L ¥, ¢(x;,y;) and generalization risk

E/(X,c(X)) = ER(h) for X distributed identically to an unlabeled sample.

2.1 Consistent case

We assume that ¢ € H and hence for any sample z, there exists h, € H such that empirical risk R (1) = 0.
Fix € > 0, and define events E, = {R(h) <€} U {R(h) # 0} for each hypothesis h € H. We provide a
uniform convergence bound for all consistent hypotheses 1, € H such that R(h;) = 0, since we don’t
know which of these is selected by the algorithm A.

Theorem 2.1 (Learning bound). Fore,6 > 0and m > 1 (ln |H| + In%), we have P(NpeyEp) =1 — 6.

Proof. For a given hypothesis h € H and any i.i.d. unlabeled training sample X € X", the probability of
getting zero empirical risk is

P(E) = Lirg>e) B ] [Linx)=v;} = Lir(yse} (1 = R(1)" < (1 — €)™
i=1



We next observe that the probability of getting a consistent hypothesis with the generalization risk
exceeding € is bounded by

P(UnenEf) = P (Uner {R(1) = 0,R(h) > €}) < Y P{R(h) = O,R(h) > e} <|H|(1—€)" < |H|e™"™.
heH

Setting the right hand side to be equal to § completes the proof. O

2.2 Inconsistent case
In many practical cases, the hypothesis set H may not consist of the target concept ¢ € C.

Theorem 2.2 (Learning bound). Let H be a finite hypothesis set. Then, for any 6 > 0,

P(mheH {R(h) <R(h) + \/;n(lnH +ln§)}> >1-4.

Proof. Let h € H and fix € > 0. Recall that R(h) = Ly, Lyy,4n(x,)} and R(h) = ER(h). Applying
Theorem |A.2 to bounded random variables 1y, j(x,)} € {0,1} such that 0% = m, together with union
bound, we get the generalization bound for single hypothesis i € H, as

m

Y (Lyy,n(x)y — R(W)

i=1

P{

R(h) = R(h)| > €} :p{

> me} < 2exp(—2me?).

Using the union bound and applying the generalization bound, we get

P(Upep {R(h) — R(h) > e}) < Y P{R(h) (h) > e} <2|H|exp(—2me?).
heH
Setting the right-hand side to be equal to § completes the proof. O

Remark 5. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H, R(h) < R(h) + O (\/ IngnH>

The number of bits needed to represent H is log, |H]|.
A larger sample size m guarantees better generalization.
The bound increases logarithmically with |H |

The bound is worse for inconsistent case 1/ gz\ | compared to lng‘Hl for the consistent case.

For a fixed |H|, to attain the same guarantee as in the consistent case, a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.

SN

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X € [a,b] for b > a. Then, for any t > 0,
we have .
E[e'X] <o 5
Proof From the convexity of the function f(x) = €', we have for any x = Aa + (1 — A)b € [a,b] for
A= [0,1]

b a

¢ = f(x) <Af(a) + (1—A)f(b) = Z%iie“’ e

Since E[X] = 0, taking expectation on both sides, we get from the linearity of the expectations

]E[etX] < b ol 4 —4a oth — (1)

b—a b—a !



where the function ¢(t) is given by

—a

_ b t(b—a)
cp(t)ta—f—ln(b_a—i—b_ae .

We can write the first two derivatives of this function ¢(t) as
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¢"(t) = (Lo toa) — oy~ (b—ay” ((1 —a)etb=a) 4 06) <(1 —a)e =) 4 "‘)> S

where we have denoted a = ;=% > 0 since [E[X] = 0. The result follows from the second order expansion
of ¢(t), such that we get for some 6 € [0,¢]

P)=a-

z(b—’l)z

2
¢(t) = p(0) +t¢'(0) + %4%’(9) <P

O

Theorem A.2 (Hoeffding). Let (X; € [a;,b;] : i € [m]) be a vector of m independent random variables, and
define o> £ Y | (b; — a;)?. Then, for any € > 0 and Sy, = Y.I" | X, we have

2¢2 2¢2
P{Sn —ES, > €} <exp —57 ) P{Su —ES; < —e} <exp —57 )

Proof. We define zero-mean random variables Y; £ X; —EX; for each i € [m]. We observe that (Y; :i €

[m]) is an independent sequence and Y £ Y™ | Y; = S,; — ES,,. From the definition of indicator sets and
for any increasing function ¢ : R —+ R, we can write

P(Y) Z (V) Liyzey = @(Y)Lig(v)29(e)) = P(€) Liyze)-

Taking expectation on both sides for the mapping ¢ : x — ¢*, we get the Chernoff bound from the
independence of Yj, as

P{Sy —ES; >¢€} <e “E[exp(t(Sm —ESn))] = e*teﬁ]E[exp(t(X,' —EX;))].
i=1

We can upper-bound each term in the product by Lemma for zero-mean random variable Y; €
[a; — EX;,b; — EX;] and use the definition of 02, to get

m 2.2
P{Su— BSu > ) <e [ JexplPts — a)2/8) exp (~te + 5 ).
i=1

First upper bound follows by observing that the upper bound is minimized for the choice of t* = %.

Second upper bound follows by repeating the same steps for bounded independent random variables
(=X;:i€[m])and e >0. O
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