
Lecture-07: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). A concept class C ⊆ YX is said to be PAC-learnable if there exists an
algorithm A and a polynomial function poly(·, ·, ·, ·) such that for (a) any ϵ,δ > 0, (b) any distribution
D ∈ M(X), (c) any target concept c ∈ C, (c) any hypothesis hz returned by the algorithm A, and (d)
any sample z ∈ (X× Y)m of size m ⩾ poly( 1

ϵ , 1
δ ,n, size(c)) generated under distribution D, the following

holds
P{R(hz)⩽ ϵ}⩾ 1 − δ.

If A further runs in poly( 1
ϵ , 1

δ ,n, size(c)), then C is said to be efficiently PAC-learnable. When such an
algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. The cost of computational representation of an input vector x ∈ X is of order n, and of a
concept c is of order size(c).

Remark 2. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after
observing a sample of size polynomial in 1

ϵ and 1
δ is approximately correct (error at most ϵ) with high

probability (at least 1 − δ), which justifies the PAC terminology. The δ > 0 is used to define the confi-
dence 1 − δ and ϵ > 0 the accuracy 1 − ϵ.

Remark 3. Note that if the running time of the algorithm is polynomial in 1
ϵ and 1

δ , then the sample size
m must also be polynomial if the full sample is received by the algorithm.

Remark 4. The following statements are true for the PAC framework.
1. It is a distribution-free model.
2. The training sample and the test examples are drawn from the same distribution D.
3. It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets

Consider a binary classification problem where Y ≜ {0,1} and a target concept c ∈ C ⊂ YX such that
y = c(x) for any labeled example. Let H ⊂ YX be a finite set of hypothesis functions for binary classifi-
cation with loss function ℓ : X× Y 7→ 1{h(x) ̸=y}, and consider an i.i.d. sample z ∈ (X× Y)m. In this case
for a hypothesis h ∈ H and sample z, empirical risk is R̂(h) = 1

m ∑m
i=1 ℓ(xi,yi) and generalization risk

Eℓ(X, c(X)) = ER̂(h) for X distributed identically to an unlabeled sample.

2.1 Consistent case

We assume that c ∈ H and hence for any sample z, there exists hz ∈ H such that empirical risk R̂(hz) = 0.
Fix ϵ > 0, and define events Eh ≜ {R(h)⩽ ϵ} ∪

{
R̂(h) ̸= 0

}
for each hypothesis h ∈ H. We provide a

uniform convergence bound for all consistent hypotheses hz ∈ H such that R̂(hz) = 0, since we don’t
know which of these is selected by the algorithm A.

Theorem 2.1 (Learning bound). For ϵ,δ > 0 and m ⩾ 1
ϵ

(
ln |H|+ ln 1

δ

)
, we have P(∩h∈HEh)⩾ 1 − δ.

Proof. For a given hypothesis h ∈ H and any i.i.d. unlabeled training sample X ∈ Xm, the probability of
getting zero empirical risk is

P(Ec
h) = 1{R(h)>ϵ}E

m

∏
i=1

1{h(Xi)=Yi} = 1{R(h)>ϵ}(1 − R(h))m ⩽ (1 − ϵ)m.
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We next observe that the probability of getting a consistent hypothesis with the generalization risk
exceeding ϵ is bounded by

P(∪h∈HEc
h) = P

(
∪h∈H

{
R̂(h) = 0, R(h) > ϵ

})
⩽ ∑

h∈H
P
{

R̂(h) = 0, R(h) > ϵ
}
⩽ |H| (1 − ϵ)m ⩽ |H| e−mϵ.

Setting the right hand side to be equal to δ completes the proof.

2.2 Inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept c ∈ C.

Theorem 2.2 (Learning bound). Let H be a finite hypothesis set. Then, for any δ > 0,

P
(
∩h∈H

{
R(h)⩽ R̂(h) +

√
1

2m
(ln |H|+ ln

2
δ
)

})
⩾ 1 − δ.

Proof. Let h ∈ H and fix ϵ > 0. Recall that R̂(h) = 1
m ∑m

i=11{Yi ̸=h(Xi)} and R(h) = ER̂(h). Applying
Theorem A.2 to bounded random variables 1{Yi ̸=h(Xi)} ∈ {0,1} such that σ2 = m, together with union
bound, we get the generalization bound for single hypothesis h ∈ H, as

P
{∣∣R̂(h)− R(h)

∣∣⩾ ϵ
}
= P

{∣∣∣∣∣ m

∑
i=1

(1{Yi ̸=h(Xi)} − R(h))

∣∣∣∣∣⩾ mϵ

}
⩽ 2exp(−2mϵ2).

Using the union bound and applying the generalization bound, we get

P(∪h∈H
{

R̂(h)− R(h) > ϵ
}
)⩽ ∑

h∈H
P
{

R̂(h)− R(h) > ϵ
}
⩽ 2 |H|exp(−2mϵ2).

Setting the right-hand side to be equal to δ completes the proof.

Remark 5. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H, R(h)⩽ R̂(h) + O
(√

log2|H|
m

)
.

2. The number of bits needed to represent H is log2 |H|.
3. A larger sample size m guarantees better generalization.
4. The bound increases logarithmically with |H|.
5. The bound is worse for inconsistent case

√
log2|H|

m compared to log2|H|
m for the consistent case.

6. For a fixed |H|, to attain the same guarantee as in the consistent case, a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X ∈ [a,b] for b > a. Then, for any t > 0,
we have

E[etX ]⩽ e
t2(b−a)2

8 .

Proof. From the convexity of the function f (x) = etx, we have for any x = λa + (1 − λ)b ∈ [a,b] for
λ = b−x

b−a ∈ [0,1]

ex = f (x)⩽ λ f (a) + (1 − λ) f (b) =
b − x
b − a

eta +
x − a
b − a

etb.

Since E[X] = 0, taking expectation on both sides, we get from the linearity of the expectations

E[etX ]⩽
b

b − a
eta +

−a
b − a

etb = eϕ(t),
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where the function ϕ(t) is given by

ϕ(t) = ta + ln
(

b
b − a

+
−a

b − a
et(b−a)

)
.

We can write the first two derivatives of this function ϕ(t) as

ϕ′(t) = a − aet(b−a)

b
b−a −

a
b−a et(b−a)

= a − a
b

b−a e−t(b−a) − a
b−a

,

ϕ”(t) =
−abe−t(b−a)

( b
b−a e−t(b−a) − a

b−a )
2
= (b − a)2

(
α

(1 − α)e−t(b−a) + α

)(
(1 − α)e−t(b−a)

(1 − α)e−t(b−a) + α)

)
⩽

(b − a)2

4
,

where we have denoted α = −a
b−a ⩾ 0 since E[X] = 0. The result follows from the second order expansion

of ϕ(t), such that we get for some θ ∈ [0, t]

ϕ(t) = ϕ(0) + tϕ′(0) +
t2

2
ϕ”(θ)⩽ t2 (b − a)2

8
.

Theorem A.2 (Hoeffding). Let (Xi ∈ [ai,bi] : i ∈ [m]) be a vector of m independent random variables, and
define σ2 ≜ ∑m

i=1(bi − ai)
2. Then, for any ϵ > 0 and Sm ≜ ∑m

i=1 Xi, we have

P{Sm − ESm ⩾ ϵ}⩽ exp
(
−2ϵ2

σ2

)
, P{Sm − ESm ⩽−ϵ}⩽ exp

(
−2ϵ2

σ2

)
.

Proof. We define zero-mean random variables Yi ≜ Xi − EXi for each i ∈ [m]. We observe that (Yi : i ∈
[m]) is an independent sequence and Y ≜ ∑m

i=1 Yi = Sm −ESm. From the definition of indicator sets and
for any increasing function ϕ : R → R+, we can write

ϕ(Y)⩾ ϕ(Y)1{Y⩾ϵ} = ϕ(Y)1{ϕ(Y)⩾ϕ(ϵ)} ⩾ ϕ(ϵ)1{Y⩾ϵ}.

Taking expectation on both sides for the mapping ϕ : x 7→ etx, we get the Chernoff bound from the
independence of Yi, as

P{Sm − ESm ⩾ ϵ}⩽ e−tϵE[exp(t(Sm − ESm))] = e−tϵ
m

∏
i=1

E[exp(t(Xi − EXi))].

We can upper-bound each term in the product by Lemma A.1 for zero-mean random variable Yi ∈
[ai − EXi,bi − EXi] and use the definition of σ2, to get

P{Sm − ESm ⩾ ϵ}⩽ e−tϵ
m

∏
i=1

exp(t2(bi − ai)
2/8) = exp

(
−tϵ +

t2σ2

8

)
.

First upper bound follows by observing that the upper bound is minimized for the choice of t∗ = 4ϵ
σ2 .

Second upper bound follows by repeating the same steps for bounded independent random variables
(−Xi : i ∈ [m]) and ϵ > 0.
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