
Lecture-19: Large sample asymptotics

1 Statistical lower bound from data processing

We give an overview of the classical large-sample theory in the setting of i.i.d. observations focusing
again on the minimax risk. These results pertain to smooth parametric models in fixed dimensions,
with the sole asymptotics being the sample size going to infinity. The main result is that, under suitable
conditions, the minimax squared error of estimating θ based on i.i.d. sample X : Ω → Xm with common
distribution Pθ ∈ P(Θ) and Fisher information matrix JF(θ) satisfies

R∗
m ≜ inf

θ̂
sup
θ∈Θ

E[
∥∥θ̂ − θ

∥∥2 | θ] =
1 + o(1)

m
sup
θ∈Θ

tr J−1
F (θ). (1)

This is asymptotic characterization of the minimax risk with sharp constant. In high dimensions, such
precise results are difficult and rare. We focus primarily on the quadratic risk and assume that Θ ⊆ Rd is
an open set. We derive several statistical lower bounds from data processing argument. Specifically, we
will take a comparison-of-experiment approach by comparing the actual model with a perturbed model.
The performance of a given estimator can be then related to the f -divergence via the data processing in-
equality and the variational representation. We start by discussing the Hammersley-Chapman-Robbins
lower bound which implies the well-known Cramér-Rao lower bound. Because these results are re-
stricted to unbiased estimators, we will also discuss their Bayesian version.

2 Hammersley-Chapman-Robbins (HCR) lower bound

Theorem 2.1 (HCR lower bound). Consider the statistical decision theory simple setting with Y= Θ = Θ′ ≜
R, and quadratic loss function L : (θ, θ̂) 7→ (θ − θ̂)2. The quadratic risk at any parameter θ ∈ Θ satisfies

Rθ(θ̂) = Eθ(θ − θ̂)2 ⩾ Varθ(θ̂)⩾ sup
θ ̸=θ′

(Eθ [θ̂]− Eθ′ [θ̂])
2

χ2(Pθ′∥Pθ)
.

Proof. Fix two parameters θ′ ̸= θ ∈ Θ, and denote their corresponding input distributions as PX ≜ Pθ and
QX ≜ Pθ′ , respectively. The estimator θ̂(X,U) can be represented by a Markov kernel Pθ̂|X : X→M(Θ′).

The estimate θ̂(X,U) is the output and the corresponding distributions for input distributions PX and
QX are Pθ̂ and Qθ̂ , respectively. Then the data processing inequality for f -divergence and the variational
representation of χ2-divergence from Example A.7 implies that

χ2(PX∥QX)⩾ χ2(Pθ̂∥Qθ̂)⩾
(Eθ [θ̂]− Eθ′ [θ̂])

2

Varθ(θ̂)
.

Corollary 2.2 (Cramér-Rao (CR) lower bound). Under the regularity conditions for parametric family, on
(a) the existence of relative density, (b) the existence of continuous derivative of relative density with respect to
parameter θ, and (c) the uniform integrability of the ratio of square of derivative of the density and density, we
have for any unbiased estimator θ̂ that satisfies Eθ [θ̂] = θ for all θ ∈ Θ ⊂ R,

Varθ(θ̂)⩾
1

JF(θ)
. (2)

Proof. From HCR lower bound in Theorem 2.1, we get Rθ(θ̂) = Varθ(θ̂) ⩾ supθ′ ̸=θ
(θ−θ′)2

χ2(Pθ′∥Pθ)
. The result

follows by lower bounding the supremum by the limit of θ′ → θ, and recalling the asymptotic quadratic
expansion of χ2-divergence in the local neighborhood in terms of the Fisher information.
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Exercise 2.3. Show that for vector y ∈ Rd and a positive definite matrix Σ ∈ Rd×d, we have

supx∈Rd :x ̸=0
⟨x,y⟩2

x⊤Σx = y⊤Σ−1y, where the maxima is achieved at x∗ = Σ−1y.

Remark 1. We note the following for HCR lower bound and CR lower bound.

• Note that the HCR lower bound is based on the χ2-divergence. We can write a lower bound
version based on Hellinger distance which also implies the CR lower bound.

• Both the HCR and the CR lower bounds extend to the multivariate case as follows. Let θ̂ be an
unbiased estimator of θ ∈ Θ ⊆ Rd. Assume that its covariance matrix Covθ(θ̂) ≜ Eθ(θ̂ − θ)(θ̂ −
θ)⊤ is positive definite. Fix a ∈ Rd. Applying HCR lower bound to estimand T(θ) ≜ ⟨a,θ⟩ and
estimator T̂(X,U)≜

〈
a, θ̂(X,u)

〉
, we get

χ2(Pθ′∥Pθ)⩾
(Eθ

〈
a, θ̂

〉
− Eθ′

〈
a, θ̂

〉
)2

Varθ

〈
a, θ̂

〉 =
⟨a,θ − θ′⟩2

a⊤ Covθ(θ̂)a
.

Since the choice of a ∈ Rd was arbitrary, the right hand side of the equation holds for all a. Taking
supremum over a, it follows from Exercise 2.3 that

χ2(Pθ′∥Pθ)⩾ (θ − θ′)⊤ Covθ(θ̂)
−1(θ − θ′).

• From the additivity property of the Fisher information, the Fisher information matrix for a sample
of m i.i.d. observations is equal to mJF(θ). Writing the Taylor series expansion of χ2-divergence in
the neighborhood of θ ∈ Θ ⊆ Rd, we get

(θ′ − θ)⊤
(

mJF(θ)− (Covθ(θ̂))
−1

)
(θ′ − θ) + o(

∥∥θ′ − θ
∥∥2
)⩾ 0.

Taking the limit θ′ → θ, we obtain mJF(θ)− (Covθ(θ̂))
−1 ⪰ 0, and taking trace we conclude that

the squared error of any unbiased estimators satisfies

Eθ

∥∥θ̂ − θ
∥∥2

= trCovθ(θ̂)⩾
1
m

tr J−1
F (θ).

This is already very close to (1), except for the fundamental restriction of unbiased estimators.

A Variational representation of f -divergences

Theorem A.1. Let P, Q ∈M(X). Given finite partition E ≜ {E1, . . . , En} ⊆ F of Ω, we define the distribution
PE ∈M([n]) by PE (i)≜ P(Ei) and QE (i)≜ Q(Ei) for all i ∈ [n]. Then

D f (P∥Q) = sup
E⊆F:E finite partition of Ω

D f (PE∥QE ).

Definition A.2 (convex conjugate). Let f : (0,∞) → R be a convex function, then its convex conjugate
f ∗ : R → R ∪ {∞} is defined for all y ∈ R as

f ∗(y)≜ sup
x∈R+

xy − f (x).

The domain of convex conjugate f ∗ is denoted by dom( f ∗)≜ {y ∈ R : f ∗(y) < ∞}.

Lemma A.3. Consider a map f : (0,∞) → R, then its convex conjugate f ∗ : R → R ∪ {∞} has the following
two properties.
(a) Convexity. f ∗ is a convex map.
(b) Biconjugation. f ∗∗ ⩽ f with equality iff f is convex and lower semi-continuous.

Proof. Recall that f ∗ is the convex conjugate of f .
(a) Since the supremum of affine maps is convex, it follows that f ∗ is convex.
(b) Since zy − f ∗(y) is concave, it has a unique maximum. From definition of convex conjugate, we

have f (x)⩾ xy − f ∗(y) for all y ∈ R, hence f ∗∗(x)⩽ f (x) for all x ∈ R+.

2



Definition A.4. Consider input space X and observation X : Ω → X, then for any convex functional
Ψ : M(X) → R, we denote its associated convex conjugate as Ψ∗ : RX → R, defined for each map
g ∈ RX as

Ψ∗(g)≜ sup
P

EPg(X)− Ψ(P).

Remark 2. Under appropriate conditions e.g. finite X, biconjugation yields the sought-after variational
representation

Ψ(P) = sup
g

EPg(X)− Ψ∗(g).

Next we will now compute these conjugates for Ψ(P)≜ D f (P∥Q). It turns out to be convenient to first
extend the definition of D f (P∥Q) to all finite signed measures P then compute the conjugate.

Definition A.5. Let f : (0,∞) → R be a convex function, then we can define its convex extension as
fext : R → R ∪ {∞} such that fext(x)≜ f (x) for x ∈ R+ and fext is convex on R.

Remark 3. In general, we can always choose fext(x) = ∞ for all x < 0. In special cases e.g. f (x) = |x−1|
2

or f (x) = (x − 1)2 we can directly take fext(x) = f (x) for all x.

Theorem A.6. Let P, Q ∈M(X). Consider a convex function f : (0,∞)→ R, its extension fext and its convex
conjugate f ∗ext. Then,

D f (P∥Q) = sup
g:X→dom( f ∗ext)

EPg(X)− EQ f ∗ext(g(X)), (3)

where the supremum can be taken over either (a) all simple g or (b) over all g satisfying EQ f ∗ext(g(X)) < ∞.

Proof. We will show this in three steps.
1. Step 1. We show that for any g : X→ dom( f ∗ext) we must have

EPg(X)⩽ D f (P∥Q) + EQ f ∗ext(g(X)). (4)

We denote the densities of P and Q by p,q respectively. Then, from the definition of f ∗ext we have
for every x ∈ {z ∈ X : q(z) > 0},

f ∗ext(g(x)) + fext

( p(x)
q(x)

)
⩾ g(x)

p(x)
q(x)

.

Integrating this over dQ = qdµ restricted to the set {q > 0}, we get

EQ f ∗ext(g(X)) +
∫

x∈X:q(x)>0
dµ(x)q(x) fext

( p(x)
q(x)

)
⩾ EPg(X)1{q(X)>0}. (5)

We notice that sup{y ∈ R : y ∈ dom( f ∗ext)}= limx→∞
fext(x)

x = f ′(∞). Therefore, f ′(∞)P{q(X) = 0}⩾
EPg(X)1{q(X)=0}. Summing this inequality with (5) we obtain the desired result in (4).

2. Step 2. We prove that supremum in (3) over simple functions g does yield D f (P∥Q), so that
inequality (4) is tight. From Theorem A.1, it suffices to show (3) for finite observation space X.
Indeed, for general X, given a finite partition E ≜ {E1, . . . , En} of X, we say a function g : X→ R is
E -measurable if g is constant on each Ei ∈ E . Taking the supremum over all finite partitions E , we
get

D f (P∥Q) = sup
E

D f (PE∥QE ) = sup
E

sup
g∈dom( f ∗ext)

X,E−measurable
EPg(X)− EQ f ∗ext(g(X))

= sup
g∈dom( f ∗ext)

X, simple
EPg(X)− EQ f ∗ext(g(X)),

where the last step follows since the two suprema combined is equivalent to the supremum over
all simple functions g.
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3. Step 3. We consider finite X. Let S ≜ {x ∈ X : Q(x) > 0} denote the support of Q. We show the
following statement which is equivalent to (3),

D f (P∥Q) = sup
g:S→dom( f ∗ext)

EPg(X)− EQ[ f ∗ext(g(X))] + f ′(∞)P(Sc). (6)

Defining functional Ψ(P) ≜ ∑x∈S Q(x) fext

(
P(x)
Q(x)

)
where P takes values over all signed measures

on S, we have
D f (P∥Q) = Ψ(P) + f ′(∞)P(Sc).

Functional Ψ(P) can be identified with RS. The convex conjugate of Ψ(P) is defined for any
g : S → R, as

Ψ∗(g) = sup
P

∑
x

P(x)g(x)− Q(x)

{
sup

h∈dom( f ∗ext)

P(x)
Q(x)

h − f ∗ext(h)

}
= sup

P
inf

h:S→dom( f ∗ext)
∑
x

P(x)(g(x)− h(x) + Q(x) f ∗ext(h(x))

=
(a) inf

h:S→dom( f ∗ext)
sup

P
∑
x

P(x)(g(x)− h(x) + Q(x) f ∗ext(h(x))

where (a) follows from the minimax theorem which applies due to finiteness of X. It follows that

Ψ∗(g) = EQ f ∗ext(g(X))1{g∈dom( f ∗ext)
S} + ∞1{g/∈dom( f ∗ext)

S}

Recall that if Ψ is convex, then the convex conjugate Ψ∗ is Ψ itself. Applying the convex duality
of convex conjugates yields the proof of the desired (6).

Remark 4. We remark that when P ≪ Q then both results (a) and (b) also hold for supremum over g :
X→ R, i.e. without restricting g(x) ∈ dom( f ∗ext). As a consequence of the variational characterization,
we get the following properties for f -divergences.

1. Convexity. First of all, note that D f (P∥Q) is expressed as a supremum of affine functions since
the expectation is a linear operation. As a result, we get that (P, Q) 7→ D f (P∥Q) is convex.

2. Weak lower semicontinuity. Recall that for an i.i.d. zero mean Rademacher vector X : Ω →
{−1,1}m the limiting distribution of Ym ≜ 1√

m ∑m
i=1 Xi is N (0,1) as m → ∞ by the central limit

theorem. However, D f (PYm∥N (0,1)) = f (0) + f ′(∞)> 0 for all m ∈ N. This is due to the fact that
the former distribution is discrete and the latter is continuous. Therefore similar to the KL diver-
gence, the best we can hope for f -divergence is semicontinuity. Indeed, if X is a nice space (e.g.,
Euclidean space), in (3) we can restrict the function g to continuous bounded functions, in which
case D f (P∥Q) is expressed as a supremum of weakly continuous functionals (note that f ∗ ◦ g is
also continuous and bounded since f ∗ is continuous) and is hence weakly lower semicontinuous,
i.e., for any sequence of distributions (Pm ∈M(X) : m ∈ N) and (Qm ∈M(X) : m ∈ N) such that
Pm → P and Qm → Q weakly, we have

liminf
m→∞

D f (Pn∥Qm)⩾ D f (P∥Q).

3. Relation to DPI. Variational representations can be thought of as extensions of the DPI. As an
exercise, one should try to derive the estimate via both the DPI and (8), for any A ∈ F

|P(A)− Q(A)|⩽
√

Q(A)χ2(P∥Q).

Example A.7 (χ2-divergence). For χ2-divergence we have f (x) = (x − 1)2. Take fext(x) = (x − 1)2,
whose conjugate is f ∗ext(y) = supx∈R+

xy − (x − 1)2 which is maximized at x = y
2 + 1, and for which

f ∗ext(y) = y + y2

4 . Applying (3) yields

χ2(P∥Q) = sup
h:X→R

EPh(X)− EQ

[
h(X) +

h2(X)

4

]
= sup

g:X→R

2EPg(X)− EQg2(X)− 1, (7)
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where the last step follows from a change of variable g ≜ 1
2 h + 1. We restrict ourselves to the class

of affine function ga,b : X→ R defined as ga,b(x)≜ ax + b for all x ∈ X, to write the inequality

sup
g:X→R

2EPg(X)− EQg2(X)− 1 ⩾ sup
a,b∈R

2aEPX + 2b − a2EQX2 − 2abEQX − b2 − 1.

The supremum on the right hand side is achieved for a∗ ≜ EPX−EQX
VarQ X and b∗ ≜ 1 − a∗EQX to write

a∗X + b∗ = 1 + a∗(X − EQX), and obtain the maximum value

sup
a,b∈R

2EP(aX + b)− EQ(aX + b)2 − 1 = 2a∗(EPX − EQX)− (a∗)2 VarQ X =
(EPX − EQX)2

VarQ X
. (8)

Remark 5. The statistical interpretation of (8) is as follows. If a test statistic h(X) is such that the sepa-
ration between its expectation under P and Q far exceeds its standard deviation, then this suggests the
two hypothesis can be distinguished reliably. The representation (8) will turn out useful in statistical ap-
plications for deriving the Hammersley-Chapman-Robbins (HCR) lower bound as well as its Bayesian
version, and ultimately the Cramér-Rao and van Trees lower bounds.

B Varational principles for KL divegrence

Definition B.1. For space X, a probability distribution Q ∈ M(X), and a measurable map f : X →
R ∪ {−∞}, we define a constant ψ f , a tilted version of Q for all x ∈ X, and a class of functions CQ, as

ψ f ≜ lnEQe f (X), dQ f (x)≜ e f (x)−ψ f dQ(x), CQ ≜
{

f : X→ R ∪ {−∞} : 0 < eψ f < ∞
}

.

We denote the class of all bounded continuous functions as Cb.

Theorem B.2 (Donsker-Varadhan). For space X, distributions P, Q ∈ M(X), and measurable map f : X→
R ∪ {−∞}, we have

D(P∥Q) = sup
f∈CQ

EP f (X)− lnEQe f (X). (9)

In particular, if D(P∥Q) < ∞ then EP f (X) is well-defined and finite for every f ∈ CQ. The identity (9) holds
with CQ replaced by the class of all R-valued simple functions. If X is a normal topological space (e.g., a metric
space) with the Borel σ-algebra, then identity (9) holds with CQ replaced by Cb.

Corollary B.3. For space X, distributions P, Q ∈ M(X), and measurable map f ∈ CQ, we have D(P∥Q) ⩾
EP f (X)− ψ f with the equality achieved for a unique measure P = Q f when D(P∥Q) is finite.

Proof. The inequality follows from Theorem B.2. We observe that ln dQ f

dQ = f − ψ f . Therefore,

EP[ f (X)− ψ f ] = EP ln
dP
dQ

− EP ln
dP

dQ f = D(P∥Q)− D(P∥Q f ).

It follows that D(P∥Q) < ∞ iff Ep f (X) < ∞, and D(P∥Q) = EP f (X)− ψ f iff D(P∥Q f ) = 0.

Proposition B.4 (Gibbs variational principle). Let f : X → R ∪ {−∞} be any measurable function and
Q ∈M(X). Then ψ f = supP∈M(X):D(P∥Q)<∞ EP f (X)− D(P∥Q). If the left-hand side is finite then the unique
maximizer of the right-hand side is P = Q f .

Proof. Consider P ∈ M(X) such that D(P∥Q) < ∞, then P ≪ Q. If ψ f = −∞ then EQe f (X) = 0 which
implies that Q{ f = −∞} = 1, and hence P{Q = −∞} = 1. In turn both sides of the above equation are
equal to −∞. Next, we consider the case when ψ f ∈ R. From Corollary B.3, we have ψ f ⩾ EP f (X)−
D(P∥Q), with equality at P = Q f .

Finally, we consider the case when ψ f = ∞. We define a sequence of bounded functions fn ≜ f ∧ n
for all n ∈ N. It follows that (ψ fn : n ∈ N) is a non-decreasing sequence of finite numbers with limit
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limn∈N ψ fn = ψ f = ∞. Since ψ fn is finite, there exists a distribution Pn ∈ M(X) such that EPn fn(X)−
D(Pn∥Q) = ψ fn for each n ∈ N. Since fn ⩽ f , we obtain

EPn f (X)− D(Pn∥Q)⩾ ψ fn .

The result follows from Fatou’s lemma by taking liminf on both sides.
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